The Open UniversitySkip to content
 

The physical properties of the dust in the RCW 120 HII region as seen by Herschel

Anderson, L. D.; Zavagno, A.; Rodón, J. A.; Russeil, D.; Abergel, A.; Ade, P.; André, P.; Arab, H.; Baluteau, J.-P.; Bernard, J.-P.; Blagrave, K.; Bontemps, S.; Boulanger, F.; Cohen, M.; Compiègne, M.; Cox, P.; Dartois, E.; Davis, G.; Emery, R.; Fulton, T.; Gry, C.; Habart, E.; Huang, M.; Joblin, C.; Jones, S. C.; Kirk, J. M.; Lagache, G.; Lim, T.; Madden, S.; Makiwa, G.; Martin, P.; Miville-Deschênes, M.-A.; Molinari, S.; Moseley, H.; Motte, F.; Naylor, D. A.; Okumura, K.; Pinheiro Gonçalves, D.; Polehampton, E.; Saraceno, P.; Sauvage, M.; Sidher, S.; Spencer, L.; Swinyard, B.; Ward-Thompson, D. and White, G. J. (2010). The physical properties of the dust in the RCW 120 HII region as seen by Herschel. Astronomy and Astrophysics, 518 L99.

URL: http://dx.doi.org/10.1051/0004-6361/201014657
Google Scholar: Look up in Google Scholar

Abstract

Context. RCW 120 is a well-studied, nearby Galactic H II region with ongoing star formation in its surroundings. Previous work has shown that it displays a bubble morphology at mid-infrared wavelengths, and has a massive layer of collected neutral material seen at sub-mm wavelengths. Given the well-defined photo-dissociation region (PDR) boundary and collected layer, it is an excellent laboratory to study the “collect and collapse” process of triggered star formation. Using Herschel Space Observatory data at 100, 160, 250, 350, and 500 μm, in combination with Spitzer and APEX-LABOCA data, we can for the first time map the entire spectral energy distribution of an H II region at high angular resolution.

Aims. We seek a better understanding of RCW 120 and its local environment by analysing its dust temperature distribution. Additionally, we wish to understand how the dust emissivity index, β, is related to the dust temperature.

Methods. We determine dust temperatures in selected regions of the RCW 120 field by fitting their spectral energy distribution (SED), derived using aperture photometry. Additionally, we fit the SED extracted from a grid of positions to create a temperature map.

Results. We find a gradient in dust temperature, ranging from ≳30 K in the interior of RCW 120, to ~20 K for the material collected in the PDR, to ~10 K toward local infrared dark clouds and cold filaments. There is an additional, hotter (~100 K) component to the dust emission that we do not investigate here. Our results suggest that RCW 120 is in the process of destroying the PDR delineating its bubble morphology. The leaked radiation from its interior may influence the creation of the next generation of stars. We find support for an anti-correlation between the fitted temperature and β, in rough agreement with what has been found previously. The extended wavelength coverage of the Herschel data greatly increases the reliability of this result.

Item Type: Journal Article
Copyright Holders: 2010 ESO
ISSN: 1432-0746
Keywords: HII regions; RCW120; dust, extinction; photon-dominated region (PDR); star formation;
Academic Unit/Department: Science > Physical Sciences
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 31799
Depositing User: Glenn White
Date Deposited: 19 Jan 2012 14:25
Last Modified: 14 Nov 2012 11:54
URI: http://oro.open.ac.uk/id/eprint/31799
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk