The Open UniversitySkip to content

Herschel-ATLAS: rapid evolution of dust in galaxies over the last 5 billion years

Dunne, L.; Gomez, H. L.; da Cunha, E.; Charlot, S.; Dye, S.; Eales, S.; Maddox, S. J.; Rowlands, K.; Smith, D. J. B.; Auld, R.; Baes, M.; Bonfield, D. G.; Bourne, N.; Buttiglione, S.; Cava, A.; Clements, D. L.; Coppin, K. E. K.; Cooray, A.; Dariush, A.; de Zotti, G.; Driver, S.; Fritz, J.; Geach, J.; Hopwood, R.; Ibar, E.; Ivison, R. J.; Jarvis, M. J.; Kelvin, L.; Pascale, E.; Pohlen, M.; Popescu, C.; Rigby, E. E.; Robotham, A.; Rodighiero, G.; Sansom, A. E.; Serjeant, S.; Temi, P.; Thompson, M.; Tuffs, R.; van der Werf, P. and Vlahakis, C. (2011). Herschel-ATLAS: rapid evolution of dust in galaxies over the last 5 billion years. Monthly Notices of the Royal Astronomical Society, 417(2) pp. 1510–1533.

DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


We present the first direct and unbiased measurement of the evolution of the dust mass function of galaxies over the past 5 billion years of cosmic history using data from the Science Demonstration Phase of the Herschel-Astrophysical Terahertz Large Area Survey (Herschel-ATLAS). The sample consists of galaxies selected at 250 m which have reliable counterparts from the Sloan Digital Sky Survey (SDSS) at z < 0.5, and contains 1867 sources. Dust masses are calculated using both a single-temperature grey-body model for the spectral energy distribution and also a model with multiple temperature components. The dust temperature for either model shows no trend with redshift. Splitting the sample into bins of redshift reveals a strong evolution in the dust properties of the most massive galaxies. At z= 0.4–0.5, massive galaxies had dust masses about five times larger than in the local Universe. At the same time, the dust-to-stellar mass ratio was about three to four times larger, and the optical depth derived from fitting the UV-sub-mm data with an energy balance model was also higher. This increase in the dust content of massive galaxies at high redshift is difficult to explain using standard dust evolution models and requires a rapid gas consumption time-scale together with either a more top-heavy initial mass function (IMF), efficient mantle growth, less dust destruction or combinations of all three. This evolution in dust mass is likely to be associated with a change in overall interstellar medium mass, and points to an enhanced supply of fuel for star formation at earlier cosmic epochs.

Item Type: Journal Item
Copyright Holders: 2011 RAS, The Authors
ISSN: 1365-2966
Keywords: ISM: evolution; galaxies: evolution; galaxies: ISM; submillimetre: galaxies
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Space
Item ID: 31712
Depositing User: Stephen Serjeant
Date Deposited: 30 Jan 2012 17:34
Last Modified: 02 May 2018 13:37
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU