The Open UniversitySkip to content

Generic expansions of countable models

Barbina, Silvia and Zambella, Domenico (2012). Generic expansions of countable models. Notre Dame Journal of Formal Logic, 53(4) pp. 511–523.

DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


We compare two different notions of generic expansions of countable saturated structures. One kind of genericity is related to existential closure, another is defined via topological properties and Baire category theory. The second type of genericity was first formulated by Truss for automorphisms. We work with a later generalization, due to Ivanov, to finite tuples of predicates and functions.

Let N,σ be a countable saturated model of some complete theory T, and let (N,σ) denote an expansion of N to the signature L0 which is a model of some universal theory T0. We prove that when all existentially closed models of T0 have the same existential theory, (N,σ) is Truss generic if and only if (N,σ) is an e-atomic model. When T is ω-categorical and T0 has a model companion Tmc, the e-atomic models are simply the atomic models of Tmc.

Item Type: Journal Item
Copyright Holders: 2012 University of Notre Dame
ISSN: 0029-4527
Keywords: generic automorphism; existentially closed structure; comeagre conjugacy class
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Related URLs:
Item ID: 31551
Depositing User: Silvia Barbina
Date Deposited: 31 Jan 2012 16:11
Last Modified: 02 May 2018 13:36
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU