The Open UniversitySkip to content

Points of middle density in the real line

Csörnyei, Marianna; Grahl, Jack and O'Neil, Toby C. (2012). Points of middle density in the real line. Real Analysis Exchange, 37(2) pp. 243–248.

Full text available as:
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (89kB)
Google Scholar: Look up in Google Scholar


A Lebesgue measurable set in the real line has Lebesgue density 0 or 1 at almost every point. Kolyada showed that there is a positive constant $\delta$ such that for non-trivial measurable sets there is at least one point with upper and lower densities lying in the interval $(\delta, 1-\delta)$. Both Kolyada and later Szenes gave bounds for the largest possible value of this $\delta$. In this note we reduce the best known upper bound, disproving a conjecture of Szenes.

Item Type: Journal Item
Copyright Holders: 2012 Michigan State University Press
ISSN: 0147-1937
Keywords: Lebesgue upper density; Lebesgue lower density
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Related URLs:
Item ID: 31519
Depositing User: Toby O'Neil
Date Deposited: 29 Nov 2012 10:13
Last Modified: 02 May 2018 13:36
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU