The Open UniversitySkip to content

Post common envelope binaries from SDSS - XII. The orbital period distribution

Nebot Gómez-Morán, A.; Gänsicke, B. T.; Schreiber, M. R.; Rebassa-Mansergas, A.; Schwope, A. D.; Southworth, J.; Aungwerojwit, A.; Bothe, M.; Davis, P. J.; Kolb, U.; Müller, M.; Papadaki, C.; Pyrzas, S.; Rabitz, A.; Rodríguez-Gil, P.; Schmidtobreick, L.; Schwarz, R.; Tappert, C.; Toloza, O.; Vogel, J. and Zorotovic, M. (2011). Post common envelope binaries from SDSS - XII. The orbital period distribution. Astronomy & Astrophysics, 536, article no. A43.

DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Context. The complexity of the common-envelope phase and of magnetic stellar wind braking currently limits our understanding of close binary evolution. Because of their intrinsically simple structure, observational population studies of white dwarf plus main sequence (WDMS) binaries can potentially test theoretical models and constrain their parameters.

Aims: The Sloan Digital Sky Survey (SDSS) has provided a large and homogeneously selected sample of WDMS binaries, which we characterise in terms of orbital and stellar parameters.

Methods: We have obtained radial velocity information for 385 WDMS binaries from follow-up spectroscopy and for an additional 861 systems from the SDSS subspectra. Radial velocity variations identify 191 of these WDMS binaries as post common-envelope binaries (PCEBs). Orbital periods of 58 PCEBs were subsequently measured, predominantly from time-resolved spectroscopy, bringing the total number of SDSS PCEBs with orbital parameters to 79. Observational biases inherent to this PCEB sample were evaluated through extensive Monte Carlo simulations.

Results: We find that 21-24% of all SDSS WDMS binaries have undergone common-envelope evolution, which is in good agreement with published binary population models and high-resolution HST imaging of WDMS binaries unresolved from the ground. The bias-corrected orbital period distribution of PCEBs ranges from 1.9 h to 4.3 d and approximately follows a normal distribution in log (Porb), peaking at ~10.3 h. There is no observational evidence for a significant population of PCEBs with periods in the range of days to weeks.

Conclusions: The large and homogeneous sample of SDSS WDMS binaries provides the means to test fundamental predictions of binary population models, hence to observationally constrain the evolution of all close compact binaries.

Item Type: Journal Item
Copyright Holders: 2011 EDP Sciences
ISSN: 1432-0746
Extra Information: 20 pp.
Keywords: binaries; white dwarfs; low-mass
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 30572
Depositing User: Ulrich Kolb
Date Deposited: 14 Dec 2011 08:52
Last Modified: 07 Dec 2018 09:58
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU