The Open UniversitySkip to content
 

An experimental study of the interaction of basaltic riverine particulate material and seawater

Jones, Morgan T.; Pearce, Christopher R. and Oelkers, Eric H. (2012). An experimental study of the interaction of basaltic riverine particulate material and seawater. Geochimica et Cosmochimica Acta, 77 pp. 108–120.

Full text available as:
[img]
Preview
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (800Kb)
DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1016/j.gca.2011.10.044
Google Scholar: Look up in Google Scholar

Abstract

The riverine transport of elements from land to ocean is an integral flux for many element cycles and an important climate regulating process over geological timescales. This flux consists of both dissolved and particulate material. The world’s rivers are estimated to transport between 16.6 and 30 Gt yr-1 of particulate material, considerably higher than the dissolved flux of-1 Gt yr-1. Therefore, the dissolution of particulate material upon arrival in estuaries and coastal waters may be a significant flux for many elements. Here we assess the role of riverine particulate material dissolution in seawater with closed-system experiments using riverine bedload material and estuarine sediment from western Iceland mixed with open ocean seawater. Both particulate materials significantly changed the elemental concentrations of the surrounding water with substantial increases in Si concentrations indicative of silicate dissolution. Seawater in contact with bedload material shows considerable enrichment of Ca, Mg, Mn, and Ni, while Li and K concentrations decrease. Moreover, the 87Sr/86Sr of seawater decreases with time with little change in Sr concentrations, indicative of a significant two-way flux between the solid and fluid phases. Mass balance calculations indicate that 3% of the Sr contained in the original riverine bedload was released during 9 months of reaction. In contrast, the estuarine material has a negligible effect on seawater 87Sr/86Sr and transition metal concentrations, suggesting that these reactions occur when particulate material first arrives into coastal waters. Solubility calculations performed using the PHREEQC computer code confirm that primary minerals are undersaturated, while secondary minerals such as kaolinite are oversaturated in the reacted fluids. These results demonstrate that riverine transported basaltic particulate material can significantly alter the composition of seawater, although the total concentrations of many major elements in seawater are regulated by the formation of secondary phases. This behavior has important implications for nutrient supply to coastal waters and the isotopic mass balance of several elements in the oceans.

Item Type: Journal Article
Copyright Holders: 2011 Elsevier Ltd.
ISSN: 0016-7037
Academic Unit/Department: Science > Environment, Earth and Ecosystems
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 30527
Depositing User: Chris Pearce
Date Deposited: 03 Jan 2012 13:52
Last Modified: 29 Oct 2012 04:18
URI: http://oro.open.ac.uk/id/eprint/30527
Share this page:

Altmetrics

Scopus Citations

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk