The Open UniversitySkip to content

Computation of Stokes flow in a channel with a collapsible segment

Lowe, T. W. and Pedley, T. J. (1995). Computation of Stokes flow in a channel with a collapsible segment. Journal of Fluids and Structures, 9(8) pp. 885–905.

DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


The numerical solution of Stokes flow in a two dimensional channel in which a segment of one wall is formed by an elastic membrane under longitudinal tension and the remaining channel boundary is rigid is considered. This model problem is being used to gain an understanding of the complex interactions that occur between the fluid flow and the wall mechanics when fluid flows through a collapsible tube, examples of which are widespread in physiology. Previous work (Pedley 1992) considered a similar system using lubrication theory in which the wall slopes are assumed small. The results showed that as the longitudinal wall tension is reduced, the downstream end of the collapsible segment becomes ever steeper, thus violating the assumptions. Here, lubrication theory is abandoned and a numerical solution of the full governing equations, including the complete expression for wall curvature, is sought using an iterative scheme. The effect of the variation in wall tension due to the fluid shear stresses at the compliant boundary is also included.

Results are presented for a range of transmural (internal minus external) pressures and wall tensions. It is found, however, that as the wall tension is reduced, the iterative scheme considered fails to converge. This is similar behaviour to that seen in viscous free surface flows (Silliman \& Scriven 1980).
Possible reasons for this breakdown together with alternative solution strategies are discussed.

Item Type: Journal Item
Copyright Holders: 1995 Elsevier
ISSN: 0889-9746
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 30500
Depositing User: Timothy Lowe
Date Deposited: 24 Jan 2012 12:16
Last Modified: 07 Dec 2018 09:58
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU