The Open UniversitySkip to content

Towards context sensitive information inference

Song, D. and Bruza, P.D. (2003). Towards context sensitive information inference. Journal of the American Society for Information Science and Technology, 54(4) pp. 321–334.

Full text available as:
PDF (Not Set) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (166kB)
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Humans can make hasty, but generally robust judgements about what a text fragment is, or is not, about. Such judgements are termed information inference. This article furnishes an account of information inference from a psychologistic stance. By drawing on theories from nonclassical logic and applied cognition, an information inference mechanism is proposed that makes inferences via computations of information flow through an approximation of a conceptual space. Within a conceptual space information is represented geometrically. In this article, geometric representations of words are realized as vectors in a high dimensional semantic space, which is automatically constructed from a text corpus. Two approaches were presented for priming vector representations according to context. The first approach uses a concept combination heuristic to adjust the vector representation of a concept in the light of the representation of another concept. The second approach computes a prototypical concept on the basis of exemplar trace texts and moves it in the dimensional space according to the context. Information inference is evaluated by measuring the effectiveness of query models derived by information flow computations. Results show that information flow contributes significantly to query model effectiveness, particularly with respect to precision. Moreover, retrieval effectiveness compares favorably with two probabilistic query models, and another based on semantic association. More generally, this article can be seen as a contribution towards realizing operational systems that mimic text-based human reasoning.

Item Type: Journal Item
ISSN: 1532-2882
Keywords: aboutness; cognitive space; vector space models; contextual information; reasoning
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Computing and Communications
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 3000
Depositing User: Users 12 not found.
Date Deposited: 03 Jul 2006
Last Modified: 02 May 2018 12:33
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU