
Open Research Online
The Open University’s repository of research publications
and other research outputs

OpenArgue: supporting argumentation to evolve secure
software systems
Conference or Workshop Item
How to cite:

Yu, Yijun; Tun, Thein; Tedeschi, Alessandra; Franqueira, Virginia N. L. and Nuseibeh, Bashar (2011). OpenArgue:
supporting argumentation to evolve secure software systems. In: 2011 IEEE 19th International Requirements
Engineering Conference, pp. 351–352.

For guidance on citations see FAQs.

c© 2011 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/RE.2011.6051671
http://dx.doi.org/10.1109/RE.2011.6051671

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/RE.2011.6051671
http://dx.doi.org/10.1109/RE.2011.6051671
http://oro.open.ac.uk/policies.html


OpenArgue: Supporting Argumentation to
Evolve Secure Software Systems

Yijun Yu∗, Thein Than Tun∗, Alessandra Tedeschi†, Virginia N. L. Franqueira‡ and Bashar Nuseibeh∗§
∗ The Open University, Milton Keynes, UK

† DeepBlue, Rome, Italy
‡ University of Twente, Enschede, The Netherlands

§ Lero, Irish Software Engineering Research Centre Limerick, Ireland

Abstract—When software systems are verified against security
requirements, formal and informal arguments provide a structure
for organizing the software artifacts. Our recent work on the
evolution of security-critical software systems demonstrates that
our argumentation technique is useful in limiting the scope of
change and in identifying changes to security properties. In
support of this work, we have developed OpenArgue, a tool for
syntax checking, visualizing, formalizing, and reasoning about
incremental arguments. OpenArgue has been integrated with
requirements engineering tools for Problem Frames and i*, and
applied to an Air Traffic Management (ATM) case study.

Index Terms—Security Requirements; Argumentation; Prob-
lem Frames; i*; ATM

I. INTRODUCTION

As long-lived software systems evolve, checking whether
their properties satisfy evolving security requirements needs
to be done continuously. Haley et al. [1] introduced the use
of argumentation for the validation of security requirements,
which we have extended in two ways: first, we have proposed
an approach for deriving the changes in security properties
of an evolving software system using argumentation [2],
and second, we have incorporated risk assessment into the
argumentation process in order to focus on practical secu-
rity [3]. In support of these, we have developed an Eclipse-
based automated tool, OpenArgue to support argumentation,
and then applied it to a significant Air Traffic Management
(ATM) case study. The OpenArgue tool supports informal
argumentation by checking and visualizing its structures. The
tool also supports formalization and reasoning of incremental
arguments described in propositional logic. Integrated with
existing plugins we developed for requirements engineering
approaches, including Problem Frames, and i*, the tool can
show traceability between them through model transforming
using a security ontology [2]. In collaboration with DeepBlue,
the tool is applied to a significant ATM case study.

II. OPENARGUE: AN ARGUMENTATION TOOL

The structure of informal arguments in our meta-model,
shown in Fig. 1, is similar to the structure of Toulmin-
style arguments. Informal arguments are formalized typically
in propositional logic. The main concepts supported by this
conceptual model include the following:

• An argument has one claim, zero or more ground(s), and
zero or more warrant(s);

Fig. 1. A simplified meta-model of arguments

• A claim is a predicate whose truth is established by an
argument;

• A ground is a piece of evidence, a fact, a theory, a
phenomenon considered to be true;

• A warrant is either a fact or a sub-argument that shows
how facts justify the claim;

• A rebuttal uses one argument to rebut another, falsifying
the claim of the rebutted argument;

• A mitigation uses one argument to mitigate a rebutted
argument, restoring the claim of the rebutted argument;

• An argument diagram has zero to many nested incremen-
tal arguments, rebuttals and mitigations;

• A round of argumentation indicates a temporal ordering
among the increments in the argumentation.

A. Providing syntax highlighting editors
The argument syntax is defined using the extended BNF. Il-

lustrated with a fragment of the ATM example from [2], Fig. 2
shows the argument editors providing syntax highlighting and
input validation, in textual and graphical forms.

B. Visualizing and synchronous editing of models
Arguments described in plain text are used to generate

argument diagrams, and the edited argument diagrams are
synchronized back into the textual input format, through model
synchronization between the EMF and GMF editors.

C. Formalizing arguments using propositional logic
When formalizing the arguments, the basic structure of an

argument is transformed into the following formula:

Ground ∧Warrant → Claim (1)



Fig. 2. Syntax highlighting and graphical editors in OpenArgue

OpenArgue automatically extracts the identifiers of the claims
as propositional literals and constructs a propositional formula
in the conjunctive normal form. Claims, grounds and warrants
may contain complex propositional formulae annotated on the
informal arguments as user-defined parts of the syntax (the tool
checks the validity of the Boolean expression as well). Ope-
nArgue then generates a syntactically correct propositional
statement for an entire diagram, including both the implicit
rules (1) and the user-defined ones.

D. Reasoning about rebuttals and mitigations

OpenArgue is integrated with the decreasoner, an off-
the-shelf reasoning tool that translates propositional formulae
into problems for SAT-solvers. The integrated tool supports
logical deduction to check whether an argument is valid, and
model finding to obtain counterexamples to the argument.
On the basis of these results, rebuttals and mitigations are
generated and visualized. Our algorithm traverses the entire
structure of arguments such that all possible rebuttals and
mitigations between adjacent rounds are checked, ensuring
that the rebuttals and mitigations are effective: a rebuttal does
negate the original claim, and a mitigation does restore the
negated claim [2].

E. Integrating with other RE tools

OpenArgue is tightly integrated with open-source RE tools
for the Problem Frames (OpenPF) and i* (OpenOME), and
the model transformation engine Viatra2. It allows elements
of the requirements model to be hyperlinked with arguments,
and performs model evolution through change patterns [2].

F. Deploying and lowering the adoption barriers

The tool is available to be downloaded as an Eclipse rich
client platform from http://sead1.open.ac.uk/pf. In addition, we
offer a Web service as a modeling wiki (Miki) [4] for users to
benefit from its full modeling features without large network
downloads, http://computing-research.open.ac.uk/trac/openre.

III. CASE STUDY

We have applied OpenArgue to analyse the impact on
the security of the Arrival Management (AMAN) system [2],

a software component supporting the Air Traffic Controllers
in the approach phase, when a new IP-based communication
network is introduced. The AMAN exchanges with other ATM
actors and processes, and presents to Air Traffic Controllers
sensitive data about the flight that have to be protected.

First, Problem Frames diagrams are created showing the
context of change, and the security properties that need to be
maintained after the change. After describing the behaviors
and properties of the system, several rounds of argumentation
are carried out assessing the satisfaction of the security re-
quirements after the change. Initial arguments are created from
the perspective of the “defender” of the system, whilst rebuttals
are created from the perspective of “attackers” and mitigations
are created from the perspective of defenders responding to
the attackers’ actions. The argumentation at every increment
is formally checked using propositional logic. When there is a
rebuttal to which no mitigation can be found, the tool exposes
a vulnerability. When the properties of the mitigations cannot
be mapped to the properties of the existing domains, this
indicates that some changes in security properties need to be
implemented in order to make the system secure.

IV. SOME RELATED WORK

Argumentation has been extensively applied to build safety
cases [5], to demonstrate compliance to laws and regula-
tions [6], and to define trusted bases of dependable software
systems [7]. Unlike these, our tool support is primarily aimed
at reasoning about the satisfaction of security requirements of
evolving systems.

V. CONCLUSIONS

The initial feedback we received from DeepBlue confirms
that: (i) argumentation is intuitive to ATM experts; (ii) ar-
guments are useful when designing and structuring software
artifacts; (iii) the use of informal and formal arguments is
helpful to domain experts; and (iv) the integrated tool support
for argumentation facilitates the adoption of the approach.

ACKNOWLEDGMENT

Financial support of the SecureChange project, SFI grant
03/CE2/I303 1, and the Sentinels program are gratefully ac-
knowledged.

REFERENCES

[1] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security requirements
engineering: A framework for representation and analysis,” IEEE Trans.
Softw. Eng., vol. 34, pp. 133–153, January 2008.

[2] S. Consortium, “D.3.2 methodology for evolutionary requirements,” Se-
cureChange Project, Tech. Rep., 2011.

[3] V. N. L. Franqueira, T. T. Tun, Y. Yu, R. Wieringa, and B. Nuseibeh,
“Risk and argument: A risk-based argumentation method for practical
security,” in RE, 2011.

[4] Y. Yu, M. Petre, and T. T. Tun, “Miki: a synchronous modeling wiki for
software requirements,” in FlexiTools, 2011.

[5] T. P. Kelly, “Arguing safety – A systematic approach to safety case
management,” Ph.D. dissertation, University of York, 1998.

[6] B. Burgemeestre, J. Hulstijn, and Y.-H. Tan, “Value-based argumentation
for justifying compliance,” in DEON’10, 2010, pp. 214–228.

[7] E. Kang and D. Jackson, “Dependability arguments with trusted bases,”
in RE, 2010, pp. 262–271.

2


