Forebrain CRF₁ modulates early-life stress-programmed cognitive deficits

How to cite:

For guidance on citations see FAQs.

© 2011 the authors

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1523/JNEUROSCI.2259-11.2011

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Forebrain CRF₁ Modulates Early-Life Stress-Programmed Cognitive Deficits

Xiao-Dong Wang, Gerhard Rammes, Igor Kraev, Miriam Wolf, Claudia Liebl, Sebastian H. Scharf, Courtney J. Rice, Wolfgang Wurst, Florian Holsboer, Jan M. Deussing, Tallie Z. Baram, Michael G. Stewart, Marianne B. Müller, and Mathias V. Schmidt

1Max Planck Institute of Psychiatry, 80804 Munich, Germany, 2Department of Anesthesiology, Technische Universität, Klinikum rechts der Isar, 81675 Munich, Germany, 3Department of Life Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom, 4Departments of Anatomy/Neurobiology, Pediatrics and Neurology, University of California, Irvine, Irvine, California 92697-4475, 5Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany, and 6Deutsches Zentrum für Neurodegenerative Erkrankungen, German Center for Neurodegenerative Diseases, 80336 Munich, Germany

Behavioral/Systems/Cognitive

Introduction

Early-life adverse events increase the danger of developing psychopathologies (Sadowski et al., 1999; Schenkel et al., 2005; Evans and Schamborg, 2009) in adult individuals with genetic risk factors (Feder et al., 2009), including specific polymorphisms and haplotypes of the corticotropin-releasing factor (CRF) gene (Smoller et al., 2005) and the CRF receptor 1 (CRF₁) gene (Bradley et al., 2008; Tyrrka et al., 2009). The hippocampus, a region essential for the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and processing of spatial information, undergoes critical development early in life and is vulnerable to stress (Avishai-Eliner et al., 2002; Kim and Diamond, 2002; Lupien et al., 2009).

Childhood traumatic events hamper the development of the hippocampus and impair declarative memory in susceptible individuals. Persistent elevations of hippocampal corticotropin-releasing factor (CRF), acting through CRF receptor 1 (CRF₁), in experimental models of early-life stress have suggested a role for this endogenous stress hormone in the resulting structural modifications and cognitive dysfunction. However, direct testing of this possibility has been difficult. In the current study, we subjected conditional forebrain CRF₁ knock-out (CRF₁-CKO) mice to an impoverished postnatal environment and examined the role of forebrain CRF₁ in the long-lasting effects of early-life stress on learning and memory. Early-life stress impaired spatial learning and memory in wild-type mice, and postnatal forebrain CRF overexpression reproduced these deleterious effects. Cognitive deficits in stressed wild-type mice were associated with disrupted long-term potentiation (LTP) and a reduced number of dendritic spines in area CA3 but not in CA1. Forebrain CRF₁ deficiency restored cognitive function, LTP and spine density in area CA3, and augmented CA1 LTP and spine density in stressed mice. In addition, early-life stress differentially regulated the amount of hippocampal excitatory and inhibitory synapses in wild-type and CRF₁-CKO mice, accompanied by alterations in the neurexin-neuroligin complex. These data suggest that the functional, structural and molecular changes evoked by early-life stress are at least partly dependent on persistent forebrain CRF₁ signaling, providing a molecular target for the prevention of cognitive deficits in adults with a history of early-life adversity.

Received May 5, 2011; revised July 14, 2011; accepted Aug. 6, 2011.

This work was supported by the European Community’s Seventh Framework Program (FP7, Project No. 201600), the Bundesministerium für Bildung und Forschung within the framework of the HGF-Plus (National Genome Research Network) (FKZ: 01G08BS15 and 01G08BS15) and by the Initiative and Networking Fund of the Helmholtz Association in the framework of the Helmholtz Alliance for Mental Health in an Ageing Society (HA-215). We thank Daniela Harbia, Claudia Kühner, Bianca Mayer, Marcel Schieve, and Stefanie Unkmeir for their technical assistance.

Correspondence should be addressed to Xiao-Dong Wang, Max Planck Institute of Psychiatry, RG Neurobiology of Stress, Kräpfelinnstraße 2-10, 80804 Munich, Germany. E-mail: wangxd@mpipsykl.mpg.de.

DOI:10.1523/JNEUROSCI.2259-11.2011

Copyright © 2011 the authors

The Journal of Neuroscience, September 21, 2011 • 31(38):13625–13634 • 13625
CRF$_1$ antagonism prevents these effects (Ivy et al., 2010) and enhances spatial performance (Fenoglio et al., 2005) in adult rats. Hence, hippocampal CRF$_1$ signaling may play an essential role in modulating the persistent programming effects of early-life stress on cognition.

While there is already some evidence for the involvement of the CRF-CRF$_1$ system in mediating the effects of early-life stress on cognition, previous pharmacological approaches were limited with regard to regional specificity. Therefore, we here used transgenic mouse lines with conditional CRF$_1$ deficiency (Müller et al., 2003) or CRF overexpression (Lu et al., 2008) specifically in forebrain regions to investigate the role of hippocampal CRF$_1$, signaling in early-life stress-induced later-life cognitive impairments. A novel mouse model of early-life stress was used (Rice et al., 2008), in which the mother–pup interaction is disrupted by an impoverished postnatal environment. We examined whether forebrain CRF overexpression would reproduce the effects of early-life stress on spatial learning and memory during adulthood, and whether forebrain CRF$_1$ inactivation would prevent the functional, structural, and molecular abnormalities induced by early-life stress.

Materials and Methods

Animals. Male transgenic mice with postnatal inactivation of the Crf$_1$ gene in forebrain neurons (referred to as CRF$_1$-CKO hereafter) were generated as described previously (Müller et al., 2003; Wang et al., 2011).

To generate a mouse line with forebrain-restricted overexpression of CRF in principal neurons, R26$^{R26flopCrf/flopCrf}$ mice were crossed to CaMKII-Cre mice (Lu et al., 2008). Male R26$^{R26flopCrf/flopCrf}$ CaMKII-Cre mice (referred to as CRF-COE hereafter) were obtained in the F2 generation. CRF$_1$-CKO and CRF-COE mice were kept on a mixed 129S2/Sv background.

Behavioral and cognitive testing. Early-life stress procedure. The limited nesting and bedding material paradigm was performed as described previously (Rice et al., 2008). Two successive cohorts of dams were used. Briefly, the day of birth was designated postnatal day 0 (P0). On the morning of P2, litters were culled to 6–8 pups, keeping at least one female and as many male pups as possible. Control dams (n = 5 and n = 10 for each cohort) were provided with sufficient amount of nesting material (2 squares of Nestlets, Indulab) and standard sawdust bedding. In the “stress” cages, dams (n = 5 and n = 9 for each cohort) were provided with limited quantity of nesting material (1/2 square of Nestlets), which was placed on a fine-gauge aluminum mesh platform (McNichols). All litters remained undisturbed during P2–P9. On P9, all dams were provided with standard nesting and bedding material. Male offspring were weaned on P28 and group housed in 4–5 per cage. Tail tips were collected and genotyped upon weaning when appropriate. At 5 months of age, all mice were killed.

Brain slice preparation and electrophysiological recordings. Test-naive mice (control wild-type, n = 5; control CRF$_1$-CKO, n = 4; stressed wild-type, n = 5; stressed CRF$_1$-CKO, n = 6) were used to observe spontaneous synaptic activity in the DG and SCCP. Slices were prepared using a vibratome in ice-cold Ringer solution (containing, in mM: 124 NaCl, 3 KCl, 26 NaHCO$_3$, 2 CaCl$_2$, 1 MgSO$_4$, 10 glucose, 1.25 NaH$_2$PO$_4$, pH 7.3) bubbled with a 95% O$_2$-5% CO$_2$ mixture. All slices were placed in a holding chamber for at least 60 min and were then transferred to a superfusing chamber for extracellular recordings. The flow rate of the solution through the chamber was 1.5 ml/min. Extracellular recordings were made using glass microelectrodes (2–3 MΩ) filled with bath salt. All experiments were performed at room temperature (RT).

Field EPSPs (IEPSPs) at synapses between mossy fibers and CA3 pyramidal neurons or Schaffer collateral-commissural pathway (S CCP) and CA1 pyramidal cells were recorded extracellularly in the stratum lucidum of the CA3 or the stratum radiatum of CA1 and evoked by test stimuli (0.066 Hz, 4–5 V, 20 ms) delivered via a bipolar tungsten electrode insulated to the tip (50 μm in diameter) placed in either the granule cell layer of dentate gyrus (DG) or SCCP, respectively. High-frequency stimulation (HFS) of 3 × 100 Hz/100 pulses with 10 s of interstimulus intervals to mossy fibers or 1 × 100 Hz/100 pulses to the SCCP were delivered to induce LTP.
The recordings were amplified, filtered (3 kHz) and digitized (9 kHz) using a laboratory interface board (ITC-16, Instrutech), and stored with the acquisition program Pulse, version 8.5 (Heka Electronik). Data were analyzed offline with the analysis program IgorPro v.6 (WaveMetrics) software. Measurement of the amplitude of the fEPSP were taken and normalized with respect to the 30 min control period before tetanic stimulation.

Golgi impregnation and the analysis of spine density. Test-naïve mice (n = 4 per group; each mouse was selected from a different litter in each group) of 7 months old were anesthetized with sodium pentobarbital (200 mg/kg, intraperitoneally) and transcardially perfused with 0.9% saline/heparin followed by 4% paraformaldehyde containing 0.5% glutaraldehyde in 0.1 M phosphate buffer (PB, pH 7.4). The brains were postfixed in 1% osmium tetroxide in 0.1 M PB for 30 min, and further washed before trimming with a razor blade to maximize the diffusion of Golgi labeling solutions. The single-section Golgi-impregnation technique was performed as previously described (Gabbott and Somogyi, 1984). Areas where apical dendrites of Golgi-impregnated neurons were examined included the stratum radiatum of area CA3 and CA1, and the middle molecular layer of DG.

Spines were counted using Neurolucida software (MicroBrightField) on a Nikon 80i microscope equipped with a 100×/1.3 numerical-aperture oil-immersion lens. For each area examined, 10 segments of dendrites of similar diameter and a length of >30 μm were chosen. Spine density was calculated as the number of spines per 1 μm of dendrite segment.

In situ hybridization. Mice that underwent the Y-maze and the Morris water maze tests were selected to examine the expression levels of the genes and proteins of interest in the hippocampus. At 1 week after the behavioral tests, mice (control wild-type, n = 11; control CRF1-CKO, n = 7; stressed wild-type, n = 8; stressed CRF1-CKO, n = 7) of 7 months old were anesthetized with isoflurane and killed. Brains were removed, snap-frozen and sectioned coronally at 16 μm through the dorsal hippocampus (bregma −1.58 to −2.18) (Paxinos and Watson, 2001) at −20°C in a cryostate (Microm HM 560, Thermo Fisher Scientific). The sections were thaw-mounted on Superfrost slides, dried, and kept at −80°C. In situ hybridization using [35S]UTP-labeled ribonucleotide probes was performed as previously described (Schmidt et al., 2007). The following primers were used to generate antisense RNA hybridization probes that recognize neurexin-1 (469 base pairs), neurelin-1 (1461 base pairs), neurelin-2 (401 base pairs), and neurelin-3 (511 base pairs), respectively: (1) neurexin-1, AGTGGTACTCGGTGGCGCTTG (forward primer) and TCACAGTCTGGTGATCTAGC (reverse primer); (2) neurexin-3, ATGCGCATGCGTTGCGCTTG (forward primer) and ATGCGTCTGGCTGATGGCCTTG (reverse primer); (3) neurelin-2, TGTTGGTGGTTGGCTGATG (reverse primer) and AACATTGCTGGGATGGCGCCTG (forward primer) and CTTCCAAAGGTCATGGGATGTT (reverse primer); (4) neurelin-3, CCACTATCCCAAAGTGGCCTCTC (forward primer) and AGTGGAGGACTGGGACCG (reverse primer). The slides were subjected to Kodak Biomax MR films and developed. Autoradiographs were digitized, and relative expression was determined by computer-assisted optical densitometry (Scion).

Double-fluorescence immunohistochemistry, image acquisition, and quantification. At 1 week after the behavioral tests, mice (control wild-type, n = 4; control CRF1-CKO, n = 3; stressed wild-type, n = 4; stressed CRF1-CKO, n = 3; each mouse was selected from a different litter in each group) of 7 months old were anesthetized with sodium pentobarbital and transcardially perfused with 0.9% saline/heparin followed by 4% buffered paraformaldehyde. Double-labeling immunofluorescence was performed on free-floating coronal sections (25 μm thick) obtained from postfixed and cryoprotected brains as described previously (Chen et al., 2004a). The following primary antibodies were used: goat anti-EGFP (1:2000, Abcam), mouse anti-vesicular glutamate transporter 1 (VGLUT1; 1:1000, Synaptic Systems), goat anti-vesicular GABA transporter (VGAT; 1:1000, Synaptic Systems), and rabbit anti-neurexins (detects most isoforms and corresponding splice-variants of neurexins; 1:500, Synaptic Systems). After incubation with primary antibodies diluted in 1% donkey serum and 0.3% Triton X-100 in 0.1 M PB at 4°C for 40 h, sections were rinsed and incubated with Alexa Fluor 488- or 647-conjugated donkey secondary antibodies (1:500, Invitrogen) for 2 h at RT. After rinsing, sections were transferred onto slides, dried, and coverslipped with Vectashield containing 4',6-diamidino-2-phenylindole (Vector Laboratories).

Fluorescent images (1600 × 1600 pixels) obtained with an Olympus IX81 confocal microscope and a 40× water-immersion objective (Olympus) using the Kalman filter and sequential scanning mode under identical settings for laser power, photomultiplier gain and offset. For the colocalization assessment of CRF1 and neurexins, images were adjusted for better brightness and contrast using the FV10-ASW 1.7 software (Olympus). For the comparison of fluorescent signals among groups, images were imported into the NIH ImageJ software, converted to 8-bit grayscale, and thresholded uniformly. The density of synaptic puncta was quantified using the “analyze particle” module of the ImageJ program.

Statistical analysis. For the analyses of spine density and VGLUT1- and VGAT-immunoreactive puncta density, data were normalized by taking the value of the control wild-type group as 100%. Data were analyzed by two-way ANOVA followed by Bonferroni post hoc test as necessary. Three-way ANOVA with condition and genotype as between-subjects factors and trial as a within-subject factor was performed on the Morris water maze data of each spatial training day and the reversal learning day, followed by two-way ANOVA with either condition or genotype as a between-subjects factor and trial as a within-subject factor when applicable. Student’s t test was used to compare pairs of means. The level of statistical significance was set as p < 0.05. To evaluate the effects of condition, genotype, and condition × genotype interaction, the level of statistical significance was set at p < 0.05 for main effects and p < 0.1 for interactions. Data are expressed as mean ± SEM.

Results Forebrain CRF1 signaling mediates early-life stress-impaired spatial learning and memory. It has been suggested that hippocampus-dependent learning and memory is selectively impaired by early-life stress in middle-aged but not young rats (Brunson et al., 2005). Therefore, all mice were tested at 6 months of age. Spatial memory in adult wild-type and CRF1-CKO mice was first evaluated by the Y-maze test (Fig., 1A). A significant main effect of stress (F(1,81) = 4.482, p < 0.05) on time spent in the novel arm was observed. Post hoc analysis showed that stressed wild-type mice, while able to discriminate the novel arm from the familiar, performed significantly worse than wild-type controls (p < 0.05, Bonferroni’s test). In contrast, the performance of stressed CRF1-CKO mice was similar to that of the controls. Importantly, similar results were obtained by using the number of the litters as Per time spent in the novel arm was observed. Post hoc analysis showed that stressed wild-type mice, while able to discriminate the novel arm from the familiar, performed significantly worse than wild-type controls (p < 0.05, Bonferroni’s test). In contrast, the performance of stressed CRF1-CKO mice was similar to that of the controls. Importantly, similar results were obtained by using the number of the litters as Per time spent in the novel arm was observed. Post hoc analysis showed that stressed wild-type mice, while able to discriminate the novel arm from the familiar, performed significantly worse than wild-type controls (p < 0.05, Bonferroni’s test). In contrast, the performance of stressed CRF1-CKO mice was similar to that of the controls. Importantly, similar results were obtained by using the number of the litters as Per time spent in the novel arm was observed. Post hoc analysis showed that stressed wild-type mice, while able to discriminate the novel arm from the familiar, performed significantly worse than wild-type controls (p < 0.05, Bonferroni’s test). In contrast, the performance of stressed CRF1-CKO mice was similar to that of the controls. Importantly, similar results were obtained by using the number of the litters as. Therefore, all mice were tested at 6 months of age. Spatial memory in adult wild-type and CRF1-CKO mice was first evaluated by the Y-maze test (Fig. 1A). A significant main effect of stress (F(1,81) = 4.482, p < 0.05) on time spent in the novel arm was observed. Post hoc analysis showed that stressed wild-type mice, while able to discriminate the novel arm from the familiar, performed significantly worse than wild-type controls (p < 0.05, Bonferroni’s test). In contrast, the performance of stressed CRF1-CKO mice was similar to that of the controls. Importantly, similar results were obtained by using the number of the litters as Per time spent in the novel arm was observed. Post hoc analysis showed that stressed wild-type mice, while able to discriminate the novel arm from the familiar, performed significantly worse than wild-type controls (p < 0.05, Bonferroni’s test). In contrast, the performance of stressed CRF1-CKO mice was similar to that of the controls. Importantly, similar results were obtained by using the number of the litters as Per time spent in the novel arm was observed. Post hoc analysis showed that stressed wild-type mice, while able to discriminate the novel arm from the familiar, performed significantly worse than wild-type controls (p < 0.05, Bonferroni’s test). In contrast, the performance of stressed CRF1-CKO mice was similar to that of the controls. Importantly, similar results were obtained by using the number of the litters as Per time spent in the novel arm was observed. Post hoc analysis showed that stressed wild-type mice, while able to discriminate the novel arm from the familiar, performed significantly worse than wild-type controls (p < 0.05, Bonferroni’s test). In contrast, the performance of stressed CRF1-CKO mice was similar to that of the controls. Importantly, similar results were obtained by using the number of the litters as.
mice displayed performance comparable to that of the controls. CRF1-CKO mice spent similar time to reach the platform compared with the controls. In contrast, stressed wild-type mice took significantly longer to locate the hidden platform in the first spatial training day, indicating impaired acquisition of spatial information. In the Morris water maze test, stressed wild-type mice performed significantly worse than wild-type controls, while stressed CRF1-CKO animals spent more time exploring the novel arm versus the known ones. However, stressed CRF-COE mice was significantly poorer in the first 2 d of spatial training ($F_{1,24} = 11.043$, $p < 0.01$, and $F_{1,24} = 4.709$, $p < 0.05$, respectively) and the reversal learning session ($F_{1,24} = 5.302$, $p < 0.05$) compared with wild-type mice. No differences in swimming ability or reference memory were found between groups (data not shown).

Together, these data suggest that stressful early-life experience attenuates hippocampus-dependent learning and memory in adulthood, and that this effect is largely dependent on forebrain CRF$_1$ signaling. To investigate the mechanisms underlying forebrain CRF$_1$-modulated cognitive impairments induced by early-life stress, only CRF$_1$-CKO mice and corresponding wild-type mice were used in the following experiments.

Forebrain CRF$_1$ inactivation abolishes the impairment of CA3 LTP and enhances CA1 LTP in early-life-stressed mice

LTP is considered a major cellular correlate for learning and memory (Lynch, 2004). In the rat it was previously shown that early-life stress impaired hippocampal LTP (Brunson et al., 2005) in a CRF$_1$-dependent manner (Ivy et al., 2010). To assess whether impaired spatial memory in stressed wild-type mice is associated with altered synaptic plasticity in hippocampal circuits, we examined both mossy fiber-CA3 LTP and SCCP-CA1 LTP in acute brain slices (Fig. 2). A significant condition \times genotype interaction ($F_{1,24} = 4.648$, $p < 0.05$) effect on mossy fiber-CA3 LTP was revealed. In the final 10 min, LTP was significantly impaired in stressed wild-type mice compared with the controls ($p < 0.05$, Bonferroni’s test). LTP deficits seen in stressed wild-type mice were prevented by forebrain CRF$_1$ deficiency, as indicated by similarly prominent LTP in hippocampal CA3 neurons in both control and stressed CRF$_1$-CKO mice (Fig. 2A). In the CA1 region, a significant interaction effect ($F_{1,30} = 8.457$, $p < 0.01$) and a main effect of genotype ($F_{1,30} = 12.850$, $p < 0.001$) on LTP were observed. Unlike findings in middle-aged rats (Brunson et al., 2005; Ivy et al., 2010), fEPSP potentiation was similar in control and stressed wild-type mice, whereas HFS-induced LTP was surprisingly augmented in stressed CRF$_1$-CKO mice compared with control and stressed counterparts ($p < 0.05$ and $p < 0.001$ respectively, Bonferroni’s test; Fig. 2B). These results point to the possibility that CRF$_1$ inactivation may overcompensate disrupted synaptic function in specific neuronal networks induced by early-life stress.

Forebrain CRF$_1$ deficiency attenuates structural alterations Evoked by early-life stress

Stress-induced structural modifications such as dendritic atrophy (Brunson et al., 2005; Ivy et al., 2010) and loss of dendritic and familiar arms similarly. In the Morris water maze test, CRF-COE mice exhibited profound spatial learning impairments in the first two spatial training days and reduced cognitive flexibility in the reversal learning session. CT, Control; ES, early-life stress; KO, CRF$_1$-CKO; OE, CRF$_1$-COE. $p < 0.05$, $**p < 0.01$ versus control wild-type group. $^1p < 0.05$, $^{**}p < 0.01$, $^{***}p < 0.001$ versus respective novel arm. $n = 10–20$ mice per group.

![Figure 1](image-url)
LTP was surprisingly enhanced in the slices of stressed CRF1-CKO mice. CT, Control; ES, early-life stress. *p < 0.01 versus the control group.

Figure 2. A, B, Effects of early-life stress on mossy fiber-CA3 LTP (A) and SCCP-CA1 LTP (B) in adult wild-type and CRF1-CKO mice. Representative traces for control and LTP are shown. A, After a HFS was delivered, mossy fiber-CA3 LTP was absent in stressed wild-type mice as indicated by significantly reduced amplitude of fEPSP in the last 10 min compared with wild-type controls. In contrast, CRF1-CKO mice showed intermediate LTP. B, In the CA1 region, no difference in fEPSP potentiation was noticed between control and stressed wild-type mice, whereas LTP was surprisingly enhanced in the slices of stressed CRF1-CKO mice. CT, Control; ES, early-life stress. *p < 0.05 versus the control group. **p < 0.001 versus stressed wild-type group. n = 4–6 mice per group.

Early-life stress interacts with forebrain CRF1 to modulate excitatory and inhibitory synaptic networks in the hippocampus

To further investigate whether synaptic density in the apical dendritic region of hippocampal CA3 and CA1 is influenced by early-life stress and forebrain CRF1 inactivation, VGLUT1 and VGAT were immunostained as markers for excitatory and inhibitory synaptic terminals, respectively (Fig. 4). Two-way ANOVA revealed significant effects of interaction (F(1,12) = 5.593, p < 0.05) and stress (F(1,10) = 8.091, p < 0.05) on the number of VGLUT1-positive puncta in the stratum radiatum of CA3. As indicated by VGLUT1 immunostaining, there was no difference in excitatory synaptic density between control wild-type and control CRF1-CKO mice. The number of excitatory synapses was significantly reduced in stressed wild-type (p < 0.01 versus wild-type controls, Bonferroni’s test) but not stressed CRF1-CKO mice (Fig. 4A, C), while inhibitory synaptic density as shown by VGAT immunostaining in area CA3 remained unchanged among groups (Fig. 4B). In the stratum radiatum of area CA1, a significant effect of interaction (F(1,10) = 5.427, p < 0.05) on VGLUT1 puncta density and a significant main effect of stress (F(1,10) = 22.950, p < 0.001) on VGAT puncta density were observed. The number of VGLUT1-positive puncta was reduced in stressed wild-type (p < 0.05 versus wild-type controls, Bonferroni’s test) but not stressed CRF1-CKO mice, whereas VGAT-immunoreactive puncta density was significantly decreased by early-life stress in both wild-type and CRF1-CKO mice (p < 0.01 and p < 0.05 respectively, Bonferroni’s test). Notably, spine density in the middle molecular layer of DG and cell density of the hippocampus were similar among groups (data not shown).

Hippocampal neurexin-1 and neuroligin-3 are differentially altered by early-life stress and forebrain CRF1

The trans-synaptic cell adhesion molecules neurexins and neuroligins specify synaptic function of excitatory and inhibitory networks, and are implicated in synaptic plasticity and cognitive function (Südhof, 2008). Therefore, we evaluated gene expression levels of hippocampal neurexins and neuroligins in wild-type and CRF1-CKO mice (Fig. 5). A significant main effect of
stress \((F_{1,29} = 4.429, p < 0.05)\) on CA3 neurexin-1 mRNA levels was revealed (Fig. 5A, B). Compared with the controls, stressed wild-type but not CRF1-CKO mice showed a significant decrease in neurexin-1 mRNA levels \((p < 0.05, \text{Bonferroni’s test})\). Moreover, the mRNA levels of neurexin-3 were reduced in CA1 by early-life stress (two-way ANOVA of condition, \(F_{1,27} = 14.360, p < 0.001\)) in both wild-type and CRF1-CKO mice \((p < 0.05, \text{Bonferroni’s test}; \text{Fig. 5C, D})\). Neuroligin-3 gene expression was also affected by stress in CA3 (two-way ANOVA of condition, \(F_{1,27} = 8.634, p < 0.01\)) and DG (two-way ANOVA of condition, \(F_{1,27} = 12.420, p < 0.01\)). Post hoc test revealed that neuroligin-3 mRNA levels were significantly reduced in the DG of stressed wild-type mice \((p < 0.05\) versus wild-type controls, Bonferroni’s test). In contrast, the gene expression levels of neurexin-1 in CA1 and DG and neuroligin-1 and neuroligin-2 in all hippocampal subregions remained unaltered among groups (data not shown).

Additionally, we found that CRF1 was in close proximity with neurexins in specific subcellular compartments of hippocampal pyramidal neurons (Fig. 5E). This partial colocalization was prominent in neuronal soma and dendrites, suggestive of potential functional interactions between CRF1 and neurexins.

Discussion

In this study, we demonstrate that early-life stress impairs hippocampus-dependent spatial learning and memory in adult mice, and is associated with physiological, morphological and molecular abnormalities in the hippocampus. Impairments of spatial learning and memory by early-life stress are recapitulated by forebrain CRF overexpression and attenuated by forebrain CRF1 inactivation, suggesting that forebrain CRF1 is crucial for the programming of cognitive function by early-life stress.

Early-life stress-induced late-onset cognitive deficits, forebrain CRF1, and glucocorticoids

Early experiences shape brain development and cognitive function (Korosi and Baram, 2009; Lupien et al., 2009). In rodents, exposure to an impoverished postnatal environment, which disrupts maternal behavior and mother–pup interaction, impairs hippocampal integrity and cognition of adult offspring (Fenoglio et al., 2006). Consistent with findings using the same stress paradigm (Rice et al., 2008), adult stressed wild-type mice exhibited impaired performance in spatial tasks. Intriguingly, the cognitive impairments in stressed animals were abolished by forebrain CRF1 inactivation, extending the findings using postnatal treatment of a selective CRF1 antagonist (NBI-30775) (Ivy et al., 2010). These data suggest that the interactions between environmental risk factors and genetic predispositions are decisive in sculpting brain function and the expression of psychopathology (Charney and Manji, 2004; Schmidt, 2010).

The involvement of CRF and CRF1 in stress-induced cognitive decline has been investigated in previous studies. Transgenic CRF overexpression (Heinrichs et al., 1996) or postnatal CRF administration (Brunson et al., 2001) impaired spatial learning and memory in adult rodents, whereas postnatal administration of NBI-30775 prevented these effects (Ivy et al., 2010) and improved spatial performance in adult rats (Fenoglio et al., 2005). However,
these approaches manipulated multiple brain regions, thus leave the neuroanatomical sites of action unclear. We observed that forebrain CRF-overexpressing mice exhibited impaired spatial performance, mirroring the cognitive phenotype of stressed wild-type mice, while stressed CRF1-CKO mice performed similarly to the controls. These findings pinpoint the importance of forebrain CRF1 in modulating cognitive function after postnatal stress exposure.

Because the calcium/calmodulin kinase II driven suppression of CRF1 did not take place until the end of the second postnatal week (Wang et al., 2011), the deletion of the Crf1 gene in CRF1-CKO mice occurred after the epoch of early-life stress (P2–P9). Although these mice were likely capable of forebrain CRF1 signaling during the stress, its absence in the critical weeks after the stress protected them from structural and functional disturbances of the hippocampus. This indicates that following early-life stress is a window of opportunity where hippocampal plasticity is still present, and where intervention might rescue from the adverse effects of early-life stress (Ivy et al., 2010).

Glucocorticoids, acting via mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs), are other key stress mediators affected by early-life stress (Joëls and Baram, 2009). Glucocorticoid excess during postnatal stress exposure, the resultant disruption of glucocorticoid feedback and the imbalance between hippocampal MR and GR have been postulated as a leading molecular basis of stress-induced cognitive deficits (de Kloet et al., 1999; Joëls et al., 2006; Oitzl et al., 2010). However, neonatal dexamethasone (a synthetic glucocorticoid) treatment failed to consistently impair cognition in adult rats (Kamphuis et al., 2003; Lin et al., 2006). Recent evidence indicates that the alterations of hippocampal GR after early-life experience may be secondary to changes of CRF1 signaling in the paraventricular nucleus (Korosi and Baram, 2009; Korosi et al., 2010) and likely the hippocampus (Fenoglio et al., 2005), and may be paralleled with, instead of being causally related to, cognitive changes. In addition, basal corticosterone levels and stress response were unaltered by chronic stress in adult wild-type and CRF1-CKO mice (Wang et al., 2011) or by forebrain CRF overexpression (Lu et al., 2008). Therefore, our data support the hypothesis that abnormal hippocampal CRF1 signaling largely accounts for the cognitive deficits in adult mice experienced early adversities.

Figure 4. Effects of early-life stress on excitatory and inhibitory synaptic density in area CA3 and CA1 in adult wild-type and CRF1-CKO mice. A. The number of VGLUT1-positive synaptic puncta in CA3 stratum radiatum was significantly reduced in stressed wild-type but not stressed CRF1-CKO mice. B. VGAT puncta density in area CA3 remained unchanged among groups. C. Representative confocal images taken from the stratum radiatum of CA3a (alongside stratum lucidum) showing VGLUT1- and VGAT-immunoreactive synaptic puncta. D. The number of VGLUT1-positive puncta in CA1 stratum radiatum was also decreased in stressed wild-type but not stressed CRF1-CKO mice. E. VGAT puncta density in area CA1 was reduced by early-life stress in both wild-type and CRF1-CKO mice. F. Representative confocal images taken from the stratum radiatum of CA1b (alongside stratum pyramidale) showing VGLUT1- and VGAT-immunoreactive synaptic puncta. CT, Control; ES, early-life stress; KO, CRF1-CKO. Scale bars, 5 μm. *p < 0.05, **p < 0.01 versus the control group. n = 3–4 mice per group.
Early-life stress-induced synaptic dysfunction and dendritic spine loss are attenuated by forebrain CRF₁ inactivation

LTP, an activity-dependent enhancement of synaptic efficacy (Lynch, 2004), is disrupted in adult rodents by early-life stress in CA3 (Brunson et al., 2005), CA1 (Brunson et al., 2005; Champagne et al., 2008; Ivy et al., 2010) and DG (Bagot et al., 2009) in a CRF₁-dependent manner (Ivy et al., 2010). Whereas the commissural/associational LTP was examined in rats, we also found disturbed mossy fiber-CA3 LTP in stressed wild-type mice. Moreover, LTP in SCCP-CA1 synapses was normal in stressed wild-type mice, whereas deficits were observed in stressed rats. This disparity may arise from species/age differences and the sensitivity of the procedure, as there was a reduction in the number of excitatory synapses in CA1 in both species (dendritic atrophy in stressed rats and reduced VGLUT1 immunoreactivity in stressed mice). Interestingly, forebrain CRF₁ inactivation not only abolished the effects of early-life adversity on CA3 LTP maintenance, but facilitated SCCP-CA1 LTP in stressed mice, indicating an important involvement of CRF₁ signaling in both neural circuits.

Acute stress initiates the release of CRF (Chen et al., 2004a) that promotes rapid loss of CA3 dendritic spines (Chen et al., 2008), which is dependent on CRF₁ and correlates with cognitive defects and LTP attenuation (Chen et al., 2010); whereas recurrent exposure to high “stress levels” of CRF results in dendritic atrophy (Chen et al., 2004b). We found an overt reduction in CA3 spine density and the total number of excitatory synapses, coupled with attenuated CA3 LTP and spatial performance, in stressed wild-type but not stressed CRF₁-CKO mice. In area CA1, however, more subtle loss of excitatory synapses took place in stressed wild-type mice. Because the relative number of spines on each dendrite remained unchanged in these animals, the loss of excitatory terminals in CA1 likely reflects the shrinkage of dendritic branches. Together with published data in rats (Brunson et al., 2005; Ivy et al., 2010), these results suggest that early-life stress may hamper the development of CA3 neurons, which in turn remodels structure and function in CA1.

We observed that forebrain CRF₁ inactivation per se reduced spine density in the apical dendrites of CA3 pyramidal neurons, which was not apparent after early-life stress. Considering that cognition and synaptic plasticity in control CRF₁-CKO mice remained intact, mechanisms such as increased complexity of CA3 proximal dendrites (Chen et al., 2004b) likely compensate these morphological changes. It should be noted that the predominant thin and filopodia-like spines observed in YFP-expressing CRF₁ mutant mice (Chen et al., 2008) may be poorly impregnated by the Golgi method used here, resulting in a potential underestimation of the total number of spines in control CRF₁-CKO mice.

Moreover, stressed CRF₁-CKO mice had more spines in CA1 neurons, which may account for enhanced SCCP-CA1 LTP.

In the hippocampus, excitatory synapses are found on dendritic spines whereas inhibitory synapses are primarily perisomatic. As CRF₁ resides on spines (Chen et al., 2004a), it is not surprising that the major contribution of CRF₁ to the effects of early-life stress involved more excitatory than inhibitory synapses. The modulation of excitatory and inhibitory network by the interaction between CRF₁ and early-life stress may be responsible for the observed functional alterations.

Potential link between CRF₁-CRF₁ and neurexin-neuroligin may modulate the effects of stress on synaptic plasticity, learning and memory

Excitatory and inhibitory synapses are modulated by the neurexin-neuroligin complex (Südhof, 2008). Neurexins are a family of synaptic cell adhesion molecules which primarily localize at presynaptic sites, while postsynaptic neuroligins abound in and act on excitatory and inhibitory synapses (Chubykin et al., 2007). Recently, the neurexin-neuroligin complex has been implicated in cognitive diseases (Jamain et al., 2003; Kim et al., 2008; Rujescu et al., 2009), and studies in mutant mice highlight their importance in synaptic transmission and cognition (Etherton et al.,...
2009; Blundell et al., 2010; Dahlhaus et al., 2010). In stressed wild-type mice, both neurexin-1 and neurelin-3 mRNA levels were reduced, whereas only neurelin-3 was decreased in stressed CRF$_1$-CKO mice. Hence, neurexins and neurelins are potential molecular substrates which may partly mediate the effects of early-life stress on synaptic plasticity and cognition. Furthermore, the colocalization of CRF$_1$ with neurexins raises the possibility that the CRF-CRF$_1$ system interacts with the neurexin-neurelin complex to modulate synaptic activity.

The current study also has a few limitations. First, the overexpression of forebrain CRF augments both CRF$_1$ and CRF$_2$ signaling, and thus is not exactly the opposite of forebrain CRF$_1$ deficiency. The involvements of CRF$_2$ signaling and the innervation of other brain regions by forebrain CRF in shaping the cognitive phenotype of CRF-COE mice cannot be excluded. In addition, genetic mouse models always carry the inherent risk of compensatory mechanisms, which might affect the observed phenotype. Third, as we examined the expression of several synaptic proteins at 1 week after the behavioral tests, the potential influences of testing on the expression changes should be considered when interpreting the data. Finally, although the impact of individual housing on the behavioral profile of male mice remains a matter of debate (Arndt et al., 2009; Bartolomucci et al., 2009), one should keep in mind that single housing of mice may alter their behavior and interact with early-life experience and genotype to contribute to the observed findings, which merits future studies.

Together, we provide evidence that forebrain CRF$_1$ signaling mediates, at least in part, the programming effects of early-life stress on cognition. Intriguingly, forebrain CRF$_1$ inactivation enhances the function of specific neuronal networks after postnatal stress exposure, such as LTP and spine density in CA1. Manipulation of forebrain CRF, may be a promising therapeutic strategy to abate the deleterious consequences of early-life stress on cognition and conceivably, to prevent or delay the onset of early-life stress-related psychiatric disorders.

References
Ivy AS, Rex CS, Chen Y, Dubé C, Maras PM, Grigoriadis DE, Gall CM, Lynch

CRF1, Early-Life Stress, and Cognition.