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Abstract. The large number of Web pages on many Web sites has raised
navigational problems. Markov chains have recently been used to model user
navigational behavior on the World Wide Web (WWW). In this paper, we
propose a method for constructing a Markov model of a Web site based on past
visitor behavior. We use the Markov model to make link predictions that assist
new users to navigate the Web site. An algorithm for transition probability
matrix compression has been used to cluster Web pages with similar transition
behaviors and compress the transition matrix to an optimal size for efficient
probability calculation in link prediction. A maximal forward path method is
used to further improve the efficiency of link prediction. Link prediction has
been implemented in an online system called ONE (Online Navigation
Explorer) to assist users’ navigation in the adaptive Web site.

1   Introduction

In a Web site with a large number of Web pages, users often have navigational
questions, such as, Where am I? Where have I been? and Where can I go? [10]. Web
browsers, such as Internet Explorer, are quite helpful. The user can check the URI
address field to find where they are. Web pages on some Web sites also have a
hierarchical navigation bar, which shows the current Web location. Some Web sites
show the user’s current position on a sitemap. In IE 5.5, the user can check the history
list by date, site, or most visited to find where he/she has been. The history can also
be searched by keywords. The user can backtrack where he/she has been by clicking
the “Back” button or selecting from the history list attached to the “Back” button.
Hyperlinks are shown in a different color if they point to previously visited pages.

We can see that the answers to the first two questions are satisfactory. To answer
the third question, what the user can do is to look at the links in the current Web page.
On the other hand, useful information about Web users, such as their interests
indicated by the pages they have visited, could be used to make predictions on the
pages that might interest them. This type of information has not been fully utilized to
provide a satisfactory answer to the third question. A good Web site should be able to
help its users to find answers to all three questions. The major goal of this paper is to
provide an adaptive Web site [11] that changes its presentation and organization on
the basis of link prediction to help users find the answer to the third question.
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In this paper, by viewing the Web user’s navigation in a Web site as a Markov
chain, we can build a Markov model for link prediction based on past users’ visit
behavior recorded in the Web log file. We assume that the pages to be visited by a
user in the future are determined by his/her current position and/or visiting history in
the Web site. We construct a link graph from the Web log file, which consists of
nodes representing Web pages, links representing hyperlinks, and weights on the links
representing the numbers of traversals on the hyperlinks. By viewing the weights on
the links as past users’ implicit feedback of their preferences in the hyperlinks, we can
use the link graph to calculate a transition probability matrix containing one-step
transition probabilities in the Markov model.

The Markov model is further used for link prediction by calculating the conditional
probabilities of visiting other pages in the future given the user’s current position
and/or previously visited pages. An algorithm for transition probability matrix
compression is used to cluster Web pages with similar transition behaviors together to
get a compact transition matrix. The compressed transition matrix makes link
prediction more efficient. We further use a method called Maximal Forward Path to
improve the efficiency of link prediction by taking into account only a sequence of
maximally connected pages in a user’s visit [3] in the probability calculation. Finally,
link prediction is integrated with a prototype called ONE (Online Navigation
Explorer) to assist Web users’ navigation in the adaptive Web site.

In Section 2, we describe a method for building a Markov model for link
prediction from the Web log file. In Section 3, we discuss an algorithm for transition
matrix compression to cluster Web pages with similar transition behaviors for
efficient link prediction. In Section 4, link prediction based on the Markov model is
presented to assist users’ navigation in a prototype called ONE (Online Navigation
Explorer). Experimental results are presented in Section 5. Related work is discussed
in Section 6. In Section 7, we conclude the paper and discuss future work.

2   Building Markov Models from Web Log Files

We first construct a link structure that represents pages, hyperlinks, and users’
traversals on the hyperlinks of the Web site. The link structure is then used to build a
Markov model of the Web site. A traditional method for constructing the link
structure is Web crawling, in which a Web indexing program is used to build an index
by following hyperlinks continuously from Web page to Web page. Weights are then
assigned to the links based on users’ traversals [14]. This method has two drawbacks.
One is that some irrelevant pages and links, such as pages outside the current Web
site and links never traversed by users, are inevitably included in the link structure,
and need to be filtered out. Another is that the Webmaster can set up the Web site to
exclude the crawler from crawling into some parts of the Web site for various reasons.
We propose to use the link information contained in an ECLF (Extended Common
Log File) [5] format log file to construct a link structure, called a link graph. Our
approach has two advantages over crawling-based methods. Only relevant pages and
links are used for link graph construction, and all the pages relevant to users’ visits
are included in the link graph.
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2.1   Link Graphs

A Web log file contains rich records of users’ requests for documents on a Web site.
ECLF format log files are used in our approach, since the URIs of both the requested
documents and the referrers indicating where the requests came from are available.
An ECLF log file is represented as a set of records corresponding to the page
requests, WL ={( 1 2

, , ...,
m

e e e )}, where 1 2, , ..., me e e  are the fields in each record. A

record in an ECLF log file might look like as shown in Figure 1:

Fig. 1. ECLF Log File

The records of embedded objects in the Web pages, including graphical, video, and
audio files, are treated as redundant requests and removed, since every request of a
Web page will initiate a series of requests of all the embedded objects in it
automatically. The records of unsuccessful requests are also discarded as erroneous
records, since there may be bad links, missing or temporarily inaccessible documents,
or unauthorized requests etc. In our approach, only the URIs of the requested Web
page and the corresponding referrer are used for link graph construction. We therefore

have a simplified set 
r

WL ={( ,r u )}, where r  and u  are the URIs of the referrer and

the requested page respectively. Since various users may have followed the same
links in their visits, the traversals of these links are aggregated to get a set

s
WL ={( , ,r u w )}, where w  is the number of traversals from r  to u . In most cases a

link is the hyperlink from r  to u . When “-“ is in the referrer field, we assume there is
a virtual link from “-“ to the requested page. We call each element ( , ,r u w ) in the set

a link pair. Two link pairs 
i

l =( , ,
i i i

r u w ) and 
j

l =( , ,j j jr u w ) are said to be connected

if and only if 
i

r = jr , 
i

r = ju , 
i

u = jr , or 
i

u = ju . A link pair set 
m

LS ={( , ,
i i i

r u w )} is

said to connect to another link pair set 
n

LS ={( , ,j j jr u w )} if and only if for every

link pair 
j

l ∈
n

LS , there exists a link pair 
i

l ∈
m

LS , so that 
i

l  and 
j

l  are connected.

Definition 2.1 (Maximally connected Link pair Set) Given a link pair set

s
WL ={( , ,j j jr u w )}, and a link pair set 

m
LS ={( , ,

i i i
r u w )} ⊂

s
WL , we say

n
LS ={( , ,

l l l
r u w )} ⊂

s
WL  is the Maximally connected Link pair Set (MLS) of 

m
LS

on 
s

WL  if and only if 
m

LS  connects to 
n

LS ,  and for every link pair 
j

l ∈ (
s

WL -
n

LS ),

{
j

l } and 
m

LS  are not connected.

For a Web site with only one major entrance, the homepage, people can come to it
in various ways. They might come from a page on another Web site pointing to the
homepage, follow a search result returned by a search engine pointing to the

177.21.3.4 - - [04/Apr/1999:00:01:11 +0100] "GET /studaffairs/ccampus.html HTTP/1.1"
200 5327 "http://www.ulst.ac.uk/studaffairs/accomm.html" "Mozilla/4.0 (compatible;
MSIE 4.01; Windows 95)"
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homepage. “-” in the referrer field of a page request record indicates that the user has
typed in the URI of the homepage directly into the address field of the browser,
selected the homepage from his/her bookmark, or clicked on a shortcut to this
homepage. In all these cases the referrer information is not available. We select a set

of link pairs 
0

LS ={(
0

, ,
i i

r u w )}, where 
i

r  is “-“, the URI of a page on another Web

site, or the URI of a search result returned by a search engine, 
0

u  is the URI of the

homepage, and iw  is the weight on the link, as the entrance to the hierarchy. We then

look for the Maximally connected Link pair Set (MLS) 
1

LS  of 
0

LS  in 
s

WL -
0

LS  to

form the second level of the hierarchy. We look for 
2

LS  of 
1

LS  in 
s

WL -
0

LS -
1

LS .

This process continues until we get 
k

LS , so that 
s

WL -
0

k

i

i

LS
=

∑ ={} or 
1k

LS + ={}.

For a Web site with a single entrance, we will commonly finish the link graph

construction with (
s

WL -
0

k

i

i

LS
=

∑ )={}, which means that every link pair has been put

onto a certain level in the hierarchy. The levels in the hierarchy are from 
0

LS  to 
k

LS .

For a Web site with several entrances, commonly found in multi-functional Web sites,

the construction will end with 
1k

LS + ={} while (
s

WL -
0

k

i

i

LS
=

∑ ) ≠ {}. We can then

select a link pair set forming another entrance from (
s

WL -
0

k

i

i

LS
=

∑ ) to construct a

separate link graph.

Definition 2.2 (Link Graph) The link graph of 
s

WL , a directed weighted graph, is a

hierarchy consisting of multiple levels, 
0

LS ,…,
i

LS ,…,
k

LS , where

0
LS ={(

0 0 0
, ,r u w )}, 

i
LS  is the MLS of 

1i
LS −  in 

s
WL -

1

0

i

j

j

LS
−

=

∑ , and 
s

WL -
0

k

j

j

LS
=

∑ ={}

or 
1k

LS + ={}.

We add the “Start” node to the link graph as the starting point for the user’s visit to
the Web site and the “Exit” node as the ending point of the user’s visit. In order to
ensure that there is a directed path between any two nodes in the link graph, we add a
link from the “Exit” node to the “Start” node. Due to the influence of caching, the
amount of weights on all incoming links of a page might not be the same as the
amount of weights on all outgoing links. To solve this problem, we can either assign
extra incoming weights to the link to the start/exit node or distribute extra outgoing
weights to the incoming links.

Figure 2 shows a link graph we have constructed using a Web log file at the
University of Ulster Web site, in which the title of each page is shown beside the node
representing the page.
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Fig. 2. A Link Graph Constructed from a Web Log File on University of Ulster Web Site

2.2   Markov Models

Each node in the link graph can be viewed as a state in a finite discrete Markov
model, which can be defined by a tuple < S , Q , L >, where S  is the state space

containing all the nodes in the link graph, Q  is the probability transition matrix

containing one-step transition probabilities between the nodes, and L  is the initial
probability distribution on the states in S . The user’s navigation in the Web site can

be seen as a stochastic process {
n

X }, which has S  as the state space. If the

conditional probability of visiting page j  in the next step, ( )

,

m

i jP , is dependent only on

the last m  pages visited by the user, {
n

X } is called a m -order Markov chain [8].

Given that the user is currently at page i  and has visited pages 
1 0
, ...,

n
i i− , ( )

,

m

i jP  is only

dependant on pages i , 
1 1
, ...,

n n m
i i− − + .

( )

,

m

i jP =
1 1 1 0 0

( | , , ..., )
n n n n

P X j X i X i X i+ − −= = = =  =

1 1 1 1 1
( | , , ..., )

n n n n n m n m
P X j X i X i X i+ − − − + − += = = =

(1)

1

2 3 4

5 6 7 8 9
10

11

9000

1800

2700 4500

810880 720

880

648

600

2128

282

2390 1800 2400

18002390
2400

72

University of Ulster

Department

Information
Student

CS
Science
&Arts

International
Office Library

Under-
graduate

Graduate

Jobs

200 300
S

E

9000

Start

Exit

12
2128

Register
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where the conditional probability of 
1n

X +  given the states of all the past events is

equal to the conditional probability of 
1n

X +  given the states of the past m  events.

When m =1, 
1n

X +  is dependent only on the current state 
n

X . ,i jP  = (1)

,i jP

= 
1

( | )
n n

P X j X i+ = =  is an one-order Markov chain, where ,i jP  is the probability

that a transition is made from state i  to state j  in one step.

We can calculate the one-step transition probability from page i  to page j  using a

link graph as follows, by considering the similarity between a link graph and a circuit
chain discussed in [7]. The one-step transition probability from page i  to page j ,

,i jP , can be viewed as the fraction of traversals from i  to j  over the total number of

traversals from i  to other pages and the “Exit” node.

,i jP  = 
1 1 1 0 0

( | , , ..., )
n n n n

P X j X i X i X i+ − −= = = = = 
1

( | )
n n

P X j X i+ = = =

,

,

i j

i kk

w

w∑
(2)

where ,i jw  is the weight on the link from i  to j , and ,i kw  is the weight on a link

from i  to k . Now a probability transition matrix, which represents the one-step
transition probability between any two pages, can be formed. In a probability
transition matrix, row i  contains one-step transition probabilities form i  to all states.
Row i  sums up to 1.0. Column i  contains one-step transition probabilities from all
states to i . The transition matrix calculated from the link graph in Figure 2 is shown
in Figure 3.

1 2 3 4 5 6 7 8 9 10 11 12

1 0.2 0.3 0.5

2 0.111 0.489 0.4

3 0.253 0.747

4 0.067 0.4 0.533

5 1.0

6 0.1 0.9

7 0.68 0.32

8 1.0

9 1.0

10 1.0

11 1.0

12 1.0

1.0

1.0

\Page
Page Exit Start

Exit

Start

Fig. 3. Transition Probability Matrix for the Link Graph in Fig. 2
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3   Transition Matrix Compression

An algorithm, that can be used to compress a sparse probability transition matrix, is
presented in [15] while the transition behaviors of the Markov model are preserved.
States with similar transition behaviors are aggregated together to form new states. In
link prediction, we need to raise the transition matrix Q  to the n th power. For a large

Q  this is computationally expensive. Spears’ algorithm can be used to compress the

original matrix Q  to a much smaller matrix 
c

Q  without significant errors since the

accuracy experiments on large matrices have shown that n

cQ  and ( )n

cQ  are very

close to each other. Since the computational complexity of nQ  is 3( )O N , by

dramatically reducing N , the time taken by compression can be compensated by all
subsequent probability computations for link prediction [15]. We have used Spear’s
algorithm in our approach. The similarity metric of every pair of states is formed to
ensure those pairs of states that are more similar should yield less error when they are
compressed [15]. Based on the similarity metric in [15], the transition similarity of
two pages i  and j  is a product of their in-link and out-link similarities. Their in-link

similarity is the weighted sum of distance between column i  and column j  at each

row. Their out-link similarity is the sum of distance between row i  and row j  at

each column.

, , ,( ) ( )i j i j i jSim Sim out link Sim in link= − × −

, ,( ) ( )i j i jy
Sim out link yα− = ∑

, ,( ) ( )i j i jx
Sim in link xβ− =∑

, ( )i j yα = , ,| |i y j yP P−

, ( )i j xβ =
, ,i x j j x i

i j

m P m P

m m

× − ×

+

,i l il
m P= ∑ , ,j l jl

m P= ∑

(3)

where 
i

m  and jm  are the sums of the probabilities on the in-links of page i  and j

respectively, , ( )i jSim out link−  is the sum of the out-link probability difference

between i  and j , , ( )i jSim in link−  is the sum of in-link probability difference

between i  and j .

For the transition matrix in Figure 3, the calculated transition similarity matrix is
shown in Figure 4.

If the similarity is close to zero, the error resulted from compression is close to

zero [15]. We can set a threshold ε , and let ,i jSim <ε  to look for candidate pages for

merging.
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1 2 3 4 5 6 7 8 9 10 11 12

1 0.00

2 0.58 0.00

3 1.29 0.21 0.00

4 1.24 0.00 0.36 0.00

5 1.31 0.57 0.74 0.99 0.00

6 1.14 0.53 0.60 0.89 0.00 0.00

7 1.04 0.51 0.81 0.83 0.26 0.24 0.00

8 1.71 0.63 1.17 1.20 1.18 1.04 0.18 0.00

9 1.14 0.53 0.75 0.

\Page
Page Exit Start

89 0.88 0.80 0.51 0.00 0.00

10 1.39 0.58 0.87 1.03 1.02 0.91 0.58 0.00 0.00 0.00

11 2.88 0.74 1.61 1.68 1.64 1.38 0.89 2.32 1.39 1.77 0.00

12 2.00 0.67 1.29 1.33 1.31 1.14 0.71 0.00 0.00 0.00 2.88 0.00

3.25 0.76 1.72 1.79 1.75 1.46 1.31 2.55 1.46Exit 1.90 5.98 3.25 0.00

2.00 0.67 1.29 1.33 1.31 1.14 1.04 1.71 1.14 1.39 2.88 2.00 3.25 0.00Start

Fig. 4. Transition Similarity Matrix for Transition Matrix in Fig. 3 (Symmetric)

By raising ε  we can compress more states with a commensurate increase in error.
Pages sharing more in-links, out-links, and having equivalent weights on them will
meet the similarity threshold. Suppose states i  and j  are merged together, we need

to assign transition probabilities between the new state i j∨  and the remaining state

k  in the transition matrix. We compute the weighted average of the i th and j th

rows and place the results in the row of state i j∨ , and sum the i th and j th

columns and place the results in the column of state i j∨ .

, , ,k i j k i k jP P P∨ = +

, ,

,

i i k j j k

i j k

i j

m P m P
P

m m
∨

× + ×
=

+

(4)

For the similarity matrix in Figure 4, we set the similarity threshold ε =0.10.
Experiments indicated a value of ε  between 0.08 and 0.15 yielded good compression
with minimal error for our link graph. The compression process is shown in Figure 5.

States 2 and 4, 5 and 6 are compressed as a result of , ( )i jSim in link− =0, states 8, 9,

10 and 12 are compressed as a result of , ( )i jSim out link− =0.

The compressed matrix is shown in Figure 6. The compressed matrix is denser than
the original transition matrix.

When either , ( )i jSim out link− =0 or , ( )i jSim in link− =0, the compression will

result in no error: , 0i jError =  and n

cQ = ( )n

cQ  [15]. So there is no compression

error for the transition matrix in Figure 4 and its compressed matrix in Figure 6. There
may not always be the case for a transition matrix calculated from another link graph.

When ,i jSim  is below a given threshold, the effect of compression on the transition
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behavior of the states ( ( )n

cQ n

cQ− ) will be controlled, the transition property of the

matrix is preserved and the system is compressed to an optimal size for probability
computation. The compressed transition matrix is used for efficient link prediction.

Fig. 5. Compression Process for Transition Matrix in Fig. 3

1 (2,4) 3 (5,6) 7 (8,9,10,12) 11

1 0.7 0.3

(2, 4) 0.08 0.25 0.67

3 0.25 0.75

(5,6) 0.04 0.96

7 0.68 0.32

(8,9,10,12) 1.0

11 1.0

1.0

1.0

\Page
Page Exit Start

Exit

Start

Fig. 6. Compressed Transition Matrix for Transition Matrix in Figure 3

4   Link Prediction Using Markov Chains

When a user visits the Web site, by taking the pages already visited by him/her as a
history, we can use the compressed probability transition matrix to calculate the
probabilities of visiting other pages or clusters of pages by him/her in the future. We
view each compressed state as a cluster of pages. The calculated conditional
probabilities can be used to estimate the levels of interests of other pages and/or
clusters of pages to him/her.

4.1   Link Prediction on M-Order N-Step Markov Chains

Sarukkai [14] proposed to use the “link history” of a user to make link prediction.
Suppose a user is currently at page i , and his/her visiting history as a sequence of m

pages is {
1 2 0
, , ..., }

m m
i i i− + − + . We use vector 

0
L ={ }jl , where jl =1 when j i=  and

jl =0 otherwise, for the current page, and vectors 
k

L ={ }
kj

l  ( 1, ..., 1k m= − − + ),

Compressed state 4 into state 2 (similarity 0.000000)(states: 2 4)
Compressed state 6 into state 5 (similarity 0.000000)(states: 5 6)
Compressed state 9 into state 8 (similarity 0.000000)(states: 8 9)
Compressed state 12 into state 10 (similarity 0.000000)(states: 10 12)
Compressed state 10 into state 8 (similarity 0.000000)(states: 8 9 10 12)
Finished compression.
Have compressed 14 states to 9.



Using Markov Chains for Link Prediction in Adaptive Web Sites         69

where 1
kj

l =  when 
k

j =
k

i  and 0
kj

l =  otherwise, for the previous pages. These

history vectors are used together with the transition matrix to calculate vector 
1

Re c

for the probability of each page to be visited in the next step as follows:

1
Re c = 2

1 0 2 1 1... m

m ma L Q a L Q a L Q− − +× × + × × + + × × (5)

where 
1 2
, , ...

m
a a a  are the weights assigned to the history vectors. The values of

1 2
, , ...

m
a a a  indicate the level of influence the history vectors have on the future.

Normally, we let 1>
1 2

...
m

a a a> > > >0, so that the closer the history vector to the

present, the more influence it has on the future. This conforms to the observation of a

user’s navigation in the Web site. 
1

Re c ={ jrec } is normalized, and the pages with

probabilities above a given threshold are selected as the recommendations.
We propose a new method as an improvement to Sarukkai’s method by calculating

the possibilities that the user will arrive at a state in the compressed transition matrix
within the next n  steps. We calculate the weighted sum of the possibilities of arriving
at a particular state in the transition matrix within the next n  steps given the user’s
history as his/her overall possibility of arriving at that state in the future. Compared
with Sarukkai’s method, our method can predict more steps in the future, and thus

provide more insight into the future. We calculate a vector Re
n

c  representing the

probability of each page to be visited within the next n  steps as follows:

Re
n

c  = 2

1,1 0 1,2 0 1, 0... n

na L Q a L Q a L Q× × + × × + + × × +

2 3 1

2,1 1 2,2 1 2, 1... n

na L Q a L Q a L Q +
− − −× × + × × + + × × +…+

1 1

1,1 1 1,2 1 1, 1...m m m n

m m m m m n ma L Q a L Q a L Q− + −
− − + − − + − − +× × + × × + + × ×

(6)

where 1,1 1,2 1, 1,1 1,2 1,, , ..., , ..., , , ...,n m m m na a a a a a− − −  are the weights assigned to the

history vectors 
0

L ,…,
1m

L− +  in 1,2,…, n ,…, 1m − , m …, 1m n+ −  steps into the

future, respectively. Normally, we let 1> ,1 ,2 ,...k k k ma a a> > > >0 ( k =1,2,…, m ), so

that for each history vector, the closer its transition to the next step, the more

important its contribution is. We also let 1> 1, 2, ,...l l m la a a> > > >0 ( l =1,2,…, n ),

so that the closer the history vector to the present, the more influence it has on the

future. Re
n

c ={ jrec } is normalized, and the pages with probabilities above a given

threshold are selected as the recommendations.

4.2   Maximal Forward Path Based Link Prediction

A maximal forward path [3] is a sequence of maximally connected pages in a user’s
visit. Only pages on the maximal forward path are considered as a user’s history for
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link prediction. The effect of some backward references, which are mainly made for
ease of travel, is filtered out. In Fig. 3, for instance, a user may have visited the Web
pages in a sequence 1 →2 →5 →2 →6. Since the user has visited page 5 after page
2 and then gone back to page 2 in order to go to page 6, the current maximal forward
path of the user is: 1 →2 →6. Page 5 is discarded in the link prediction.

5   Experimental Results

Experiments were performed on a Web log file recorded between 1st and 14th of
October, 1999 on the University of Ulster Web site, which is 371 MB in size and
contains 2,193,998 access records. After discarding the irrelevant records, we get
423,739 records. In order to rule out the possibility that some links are only
interesting to individual users, we set a threshold as the minimum number of
traversals on each hyperlink as 10 and there must be three or more users who have
traversed the hyperlink. We assume each originating machine corresponds to a
different user. These may not always be true when such as proxy servers exist. But in
the absence of user tracking software, the method can still provide rather reliable
results. We then construct a link graph consisting of 2175 nodes, and 3187 links
between the nodes. The construction process takes 26 minutes on a Pentium 3
desktop, with a 600 MHz CPU, 128M RAM. The maximum number of traversals on a
link in the link graph is 101,336, which is on the link from the “Start” node to the
homepage of the Web site. The maximum and average numbers of links in a page in
the link graph are 75 and 1.47 respectively. The maximum number of in-links of a
page in the link graph is 57.

The transition matrix is 2175×2175 and very sparse. By setting six different
thresholds for compression, we get the experimental results given in Table 1:

Table 1. Compression Results on a Transition Matrix from a Web Log File

 ε Compression Time
(Minutes)

Size after compression % of states removed

0.03 107 1627 25.2

0.05 110 1606 26.2
0.08 118 1579 27.4
0.12 122 1549 28.8
0.15 124 1542 29.1

0.17 126 1539 29.2

We can see that when ε  increases, the matrix becomes harder to compress. For this
matrix, we choose ε =0.15 for a good compression rate without significant error.
Experiments in [15] also show that a value of ε =0.15 yielded good compression with
minimum errors. Now we calculate 2

cQ  and use the time spent as the benchmark for
m

cQ . Since we can repeatedly multiply 2

cQ  by 
c

Q  to get 2

cQ , …, 1m

cQ − , m

cQ , the

time spent for computing 2

cQ ,…, 1m

cQ − , m

cQ  can be estimated as the 1m −  time of

the time for 2

cQ . Table 2 summarises the experimental results of computation for
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2

cQ . We can see that the time needed for compression is compensated by the time

saved in the computation for 2

c
Q . When calculating mQ , computational time can be

further reduced. 2Q ,…, mQ  can be computed off-line and stored for link prediction.

So the response time is not an issue given the fast developing computational
capability of the Web servers.

Table 2. Experimental Results for 
2Q  and 

2

c
Q

Matrix Dimension(
2

)
2175 1627 1606 1579 1549 1542 1539

Computation Time for
2Q  or 

2

c
Q  (Minutes)

1483 618 592 561 529 521 518

Percentage of time
saved (%)

N/A 58.3 60.1 62.1 64.3 64.9 65.1

We then use the compressed transition matrix for link prediction. Link prediction is
integrated with a prototype called ONE (Online Navigation Explorer) to assist users’
navigation in our university Web site. ONE provides the user with informative and
focused recommendations and the flexibility of being able to move around within the
history and recommended pages. The average time needed for updating the
recommendations is under 30 seconds, so it is suitable for online navigation, given the
response can be speeded up with the current computational capability of many
commercial Web sites. We selected m =5 and n =5 in link prediction to take into
account five history vectors in the past and five steps in the future. We computed

2Q ,…, 9Q  for link prediction.

The initial feedback from our group members is very positive. They have spent less
time to find interested information using ONE than not using ONE in our university
Web site. They have more successfully found the information useful to them using
ONE than not using ONE. So users’ navigation has been effectively speeded up using
ONE. ONE presents a list of Web pages as the user’s visiting history along with the
recommended pages updated while the user traverses the Web site. Each time when a
user requests a new page, probabilities of visiting any other Web pages or page
clusters within the next n  steps are calculated. Then the Web pages and clusters with
the highest probabilities are highlighted in the ONE window. The user can browse the
clusters and pages like in the Windows Explorer. Icons are used to represent different
states of pages and clusters. Like the Windows Explorer, ONE allows the user to
activate pages, expand clusters. Each page is given its title to describe the contents in
the page.

6   Related Work

Ramesh Sarukkai [14] has discussed the application of Markov chains to link
prediction. User's navigation is regarded as a Markov chain for link analysis. The
transition probabilities are calculated from the accumulated access records of past
users. Compared with his method, we have three major contributions. We have
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compressed the transition matrix to an optimal size to save the computation time of
1m nQ + − , which can save a lot of time and resources given the large number of Web

pages on a modern Web site. We have improved the link prediction calculation by
taking into account more steps in the future to provide more insight into the future.
We have proposed to use Maximal Forward Path method to improve the accuracy of
link prediction results by eliminating the effect of backward references by users.

The “Adaptive Web Sites” approach has been proposed by Perkowitz and Etzioni
[11]. Adaptive Web sites are Web sites which can automatically change their
presentation and organization to assist users’ navigation by learning from Web usage
data. Perkowitz and Etzioni proposed the PageGather algorithm to generate index
pages composed of Web pages most often associated with each other in users’ visits
from Web usage data to evaluate a Web site’s organization and assist users’
navigation [12].

Our work is in the context of adaptive Web sites. Compared with their work, our
approach has two advantages. (1) The index page is based on co-occurrence of pages
in users’ past visits and does not take into account users’ visiting history. The index
page is a static recommendation. Our method has taken into account users’ history to
make link prediction. The link prediction is dynamic to reflect the changing interests
of the users. (2) In PageGather, it is assumed that each originating machine
corresponds to a single user. The assumption can be undermined by proxy servers,
dynamic IP allocations, which are both common on the WWW. Our method treats a
user group as a whole without the identification of individual users and thus is more
robust to these influences. However, computation is needed in link prediction and the
recommendations can not respond as quickly as the index page, which can be directly
retrieved from a Web server. Spears [15] proposed a transition matrix compression
algorithm based on transition behaviors of the states in the matrix. Transition matrices
calculated from systems, which are being modeled in too many details, can be
compressed for smaller state spaces while the transition behaviors of the states are
preserved. The algorithm has been used to measure the transition similarities between
pages in our work and compress the probability transition matrix to an optimal size
for efficient link prediction.

Pirolli and Pitkow [13] studied the web surfers' traversing paths through the
WWW and proposed to use a Markov model for predicting users' link selections
based on past users' surfing paths. Albrecht et al. [1] proposed to build three types of
Markov models from Web log files for pre-sending documents. Myra Spiliopoulou
[16] discussed using navigation pattern and sequence analysis mined from the Web
log files to personalize a web site. Mobasher, Cooley, and Srivastava [4, 9] discussed
the process of mining Web log files using three kinds of clustering algorithms for site
adaptation. Brusilovsky [2] gave a comprehensive review of the state of the art in
adaptive hypermedia research. Adaptive hypermedia includes adaptive presentation
and adaptive navigation support [2]. Adaptive Web sites can be seen as a kind of
adaptive presentation of Web sites to assist users’ navigation.

7   Conclusions

Markov chains have been proven very suitable for modeling Web users’ navigation on
the WWW. This paper presents a method for constructing link graphs from Web log



Using Markov Chains for Link Prediction in Adaptive Web Sites         73

files. A transition matrix compression algorithm is used to cluster pages with similar
transition behaviors together for efficient link prediction. The initial experiments
show that the link prediction results presented in a prototype ONE can help user to
find information more efficiently and accurately than simply following hyperlinks to
find information in the University of Ulster Web site.

Our current work has opened several fruitful directions as follows: (1) Maximal
forward path has been utilized to approximately infer a user’s purpose in his/her
navigation path, which might not be accurate. The link prediction can be further
improved by identifying users’ goal in each visit [6]. (2) Link prediction in ONE
needs to be evaluated by a larger user group. We plan to select a group of users
including students, staff in our university, and people from outside our university to
use ONE. Their interaction with ONE will be logged for analysis. (3) We plan to use
Web log files from some commercial Web site to build a Markov model for link
prediction and evaluate the results on different user groups.
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