Copy the page URI to the clipboard
Georgiou, M.; East, E.; Loughlin, J.; Golding, J. and Phillips, J.
(2011).
DOI: https://doi.org/10.1002/glia.21210
URL: http://onlinelibrary.wiley.com/doi/10.1002/glia.21...
Abstract
There is a clinical demand to shorten the delay of reinnervation and improve functional recovery after peripheral nerve injury. A peripheral nerve repair device with the ability to direct and promote cellular growth across a lesion would be a promising alternative to nerve autograft repair, which is the current gold standard treatment. The growth of axons across a lesion is most effective when supported by columns of aligned Schwann cells, as found in an autograft. Here we report a technique to generate aligned Schwann cells within a stable and robust 3D collagen matrix, providing a cellular biomaterial that confers alignment on regenerating neurons.
Collagen gels containing F7 Schwann cells were tethered for 24 h to permit cellular self-alignment and then plastic compressed by the rapid removal of the interstitial fluid from fully hydrated gels. This process generates stable tissue-like gels with cells situated within a dense, strong, three-dimensional matrix. Cell alignment was monitored before and after plastic compression using CellTracker dye and confocal image analysis. Dissociated dorsal root ganglia (DRG) cells were cultured on the surface of the material for 3 days and neurite growth was quantified using immunostaining and confocal microscopy.
Chains of aligned Schwann cells were formed within the collagen matrix and persisted following plastic compression. This robust, aligned cellular biomaterial promotes and guides neuronal growth in a manner that mimics a nerve autograft. The next stage of this work is to integrate this cellular material into a repair device. Plastic compressed gels containing aligned Schwann cells have been rolled into columns which can then be packed together. In vitro testing of this engineered endoneurium, within a silicone outer tube, demonstrates the potential of such a device to function as an implantable conduit for peripheral nerve repair.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 29531
- Item Type
- Conference or Workshop Item
- Extra Information
- Abstract published in Glia, Supplement: 10th European meeting on Glial Cells in Health and Disease, Volume59, Issue Supplement 1, pages S42-S154, October 2011
- Keywords
- Schwann cell; collagen; regeneration
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Life, Health and Chemical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2011 Wiley-Liss, Inc.
- Related URLs
- Depositing User
- James Phillips