Copy the page URI to the clipboard
Cameron, Peter J. and Webb, Bridget S.
(2002).
DOI: https://doi.org/10.1002/jcd.10005
Abstract
It is usually assumed that an infinite design is a design with infinitely many points. This encompasses a myriad of structures, some nice and others not. In this paper we consider examples of structures that we would not like to call designs, and investigate additional conditions that exclude such anomalous structures. In particular, we expect a design to be regular, the complement of a design to be a design, and a t-design to be an s-design for all 0<s<=t. These are all properties that can be taken for granted with finite designs, and for infintie Steiner systems. We present a new definition of an infinite t-design, and give examples of structures that satisfy this definition. We note that infinite designs considered in the literature to date satisfy this definition. We show that infinite design theory does not always mirror finite design theory, for example there are examples of designs with v>b.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 2924
- Item Type
- Journal Item
- ISSN
- 1063-8539
- Extra Information
- Some of the symbols may not have transferred correctly into this bibliographic record and/or abstract.
- Keywords
- infinite design
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Depositing User
- Bridget Webb