Modelling Radiatively Active Water Ice Clouds in the Martian Water Cycle

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© 2011 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Modelling radiatively active water ice clouds in the Martian water cycle

L. Steele1, S. R. Lewis1, M. R. Patel2 and R. J. Wilson3

1Department of Physics & Astronomy, The Open University, MK7 6AA, UK
2Planetary and Space Sciences Research Institute (PSSRI), The Open University, MK7 6AA, UK
3Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA

Email: l.steele@open.ac.uk

Introduction

Aerosols, both water ice and dust, play a key role in the Martian climate. However, our understanding of the interactions between these two processes on the surface (solar ice caps, frost) in the atmosphere (vapour, ice clouds) and the distribution and properties of dust is currently incomplete. Water ice clouds have been observed at many locations in the Martian atmosphere, and they occur in many different guises, such as polar hood clouds, ice cap clouds and ground fogs. The largest spatial distribution of clouds belongs to the aphelion cloud belt, which appears during northern hemisphere spring and summer each year in a zonal band between around 10° S and 30° N [1, 2]. In this paper, we demonstrate the potential impact of water ice clouds on a Mars Global Circulation Model (MGCM), and test the sensitivity of the model to varying dust opacity. We use independent model experiments and assimilations of Mars Climate Sounder Spectrometer (MCS) retrievals and validate the model against Mars Climate Sounder (MCS) observations.

Effects of water ice clouds in MGCM simulations

It is known that cirrus clouds in the Earth's atmosphere can scatter and absorb incoming solar radiation, and absorb and emit thermal infrared radiation, causing a warming of the atmosphere [3,4]. Therefore, due to the presence of water ice clouds in the Martian atmosphere, it is necessary to take into account their radiative effects in MGCMs.

The current LMD MGCM [5] run in the UK uses a spectral dynamical core, and includes a simplified water cycle in which there is atmospheric transport of water vapour and ice, a bulk cloud scheme, and interaction with the Martian respiration [6,7]. However, in the model run in the UK, the water ice opacity is not yet coupled with the MGCM radiation scheme, so absorption of visible/infrared radiation by the water ice clouds is not taken into account. This absorption of radiation has been identified as being potentially significant in the equatorial middle atmosphere of Mars around aphelion, when the planet-circling cloud belt is introducing a warming of the atmosphere around 40° S. As has been seen, the distribution of dust in the MGCM has a large impact on atmospheric temperature. We would therefore be expected to influence the temporal and spatial distribution of clouds, though such simulations have not yet been carried out.

Sensitivity of the model to dust distribution

Due to the radiative effects of dust, its temporal and spatial distribution will have a large effect on other atmospheric properties. To test the sensitivity of the MGCM to the distribution of dust, simulations with a variety of dust distributions have been run using the UK version of the LMD MGCM.

The two dust schemes used in the independent simulations are derived from assimilations of TES total dust opacity. They are based on earlier and revised retrievals, henceforth denoted as 2003 and 2005 dust schemes. As can be seen, both dust schemes, both simulations used identical initial conditions.

Figure 1. (a) Seasonal evolution of zonally averaged equatorial temperature bias over the course of the MGS mapping mission; White and black contours indicate variable depth of assumed dust distribution, 185° K isotherm and approximate height of cloud condensation. (b) Evolution of zonally averaged temperature bias at 0.5 bar [6].

Figure 2 shows the difference in visible dust opacity averaged over Mars month 5 for both dust schemes. As can be seen, the 2003 dust scheme shows increased opacity, particularly in the southern hemisphere poleward of around 40° S. The 2005 dust scheme leads to stronger meridional circulation, and hence increased polar warming.

Figure 2. Difference in dust column visible opacity between simulations run with different TES dust schemes (2003 – 2005), averaged over L = 120°, 130°.

Figure 3 shows the effect of this increased dust opacity on the atmospheric temperature. As can be seen the new dust scheme and the assimilation are in much closer agreement with the MCS observations than the profile from the MCD. The lower temperature close to the pole in the simulation are apparent, but the middle atmosphere warming agrees well with the MCS plot.

As has been seen, the distribution of dust in the MGCM has a large impact on atmospheric temperature. We would therefore be expected to influence the temporal and spatial distribution of clouds, though such simulations have not yet been carried out.

Figure 3. Difference in temperature between simulations run with different TES dust schemes (2003 – 2005), averaged over MY4.

Figure 4 shows the effect of this increased dust opacity on the atmospheric temperature. As can be seen the new dust scheme and the assimilation are in much closer agreement with the MCS observations than the profile from the MCD. The lower temperature close to the pole in the simulation are apparent, but the middle atmosphere warming agrees well with the MCS plot.

Sensitivity of the model to dust distribution

Due to the radiative effects of dust, its temporal and spatial distribution will have a large effect on other atmospheric properties. To test the sensitivity of the MGCM to the distribution of dust, simulations with a variety of dust distributions have been run using the UK version of the LMD MGCM.

The two dust schemes used in the independent simulations are derived from assimilations of TES total dust opacity. They are based on earlier and revised retrievals, henceforth denoted as 2003 and 2005 dust schemes. As can be seen, both dust schemes, both simulations used identical initial conditions.

As well as comparing the two simulations with each other, we have also carried out comparisons with observations from the MCD and modelled data from the MCD. This is done by comparing the two simulations with each other, including the 2005 dust scheme and the assimilation of volatiles improves the output of the MGCM. This is also expected as the assimilation includes the radiative effects of clouds, unlike the current UK version of the model. Strong temperature inversions can be seen close to the ground in the model simulations, but these are not apparent in the MCS or MCD profiles, as they are too close to the surface to be resolved by the instruments.

Figure 5. Mean vertical profiles of temperature at varying latitudes from: (a) MY24 simulation using 2005 dust scheme; (b) MY24 simulation using 2003 dust scheme; (c) MY25 assimilation using TES dust and thermal retrievals; and (d) modelled data from the MCD v3. (Panels (d) and (e) are from [5]).

As has been seen, the distribution of dust in the MGCM has a large impact on atmospheric temperature. We would therefore be expected to influence the temporal and spatial distribution of clouds, though such simulations have not yet been carried out.

Figure 5. Mean vertical profiles of temperature at varying latitudes from: (a) MY24 simulation using 2005 dust scheme; (b) MY24 simulation using 2003 dust scheme; (c) MY25 assimilation using TES dust and thermal retrievals; and (d) modelled data from the MCD v3. (Panels (d) and (e) are from [5]).

Project aims

The project will model the Martian water cycle, including radiatively active water ice clouds, to interpret new observations from MCS. We will be using the latest version of the LMD MGCM, which includes the new LMD physics routines. A unique data assimilation system [10] will be used to obtain a complete, dynamically self-consistent reconstruction of the extratropical global circulation for the complete period of the MCS mission to date. A series of diagnostic studies will be made to characterize the climatology and synoptic meteorology of Mars over seasonal and interannual timescales, including detailed case studies of events such as the formation of cyclospheric weather systems. The assimilation results can be used to test the validity of the new cloud schemes introduced to the model, improving our understanding of the Martian water cycle.

Acknowledgements

The authors thank L. Montaboné and D. Muñholland for their assistance with the model simulations.

References