Modelling Radiatively Active Water Ice Clouds in the Martian Water Cycle

How to cite:

For guidance on citations see FAQs

© 2011 The Authors
Version: Version of Record
Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Aerosols, both water ice and dust, play a key role in the Martian climate. However, our understanding of the interactions between these two reservoirs, especially on the surface (solar ice caps, frost) in the atmosphere (vapour, ice clouds), and the distribution and properties of dust is currently incomplete. Water ice clouds have been observed at many locations in the Martian atmosphere, and they occur in many different guises, such as polar hood clouds, ice cap clouds and ground frosts. The largest spatial distribution of clouds belongs to the aphelion cloud belt, which appears during northern hemisphere spring and summer each year in a zonal band between around 10° S and 30° N [1, 2].

In this poster, we demonstrate the potential impact of water ice clouds on a Mars Global Circulation Model (MGM), and test the sensitivity of the model to varying dust opacity. We use independent model experiments and assimilations of Mars Climate Sounder (TES) temperature and validate the model against Mars Climate Sounder (MCS) observations.

Effects of water ice clouds in MGM simulations

It is known that cirrus clouds in the Earth’s atmosphere can scatter and absorb incoming solar radiation, and absorb and emit thermal infrared radiation, causing a warming of the atmosphere [3,4]. Therefore, due to the presence of water ice clouds in the Martian atmosphere, it is necessary to take into account their radiative effects in MGMs.

The current LMD-MGCM [5] run in the UK uses a spectral dynamical core, and includes a simplified water cycle in which there is atmospheric transport of water vapour and ice, a bulk cloud scheme, and interaction with the Martian geology [6,7]. However, in the model run in the UK, the water ice opacity is not yet coupled with the MGCM radiation scheme, so absorption of visible/infrared radiation by the water ice clouds is not taken into account. This absorption of radiation has been identified as being potentially significant in the equatorial middle atmosphere of Mars around aphelion, when the planet-circling cloud belt forms [8]. As can be seen in Figure 1, it appears as though the downward infra-red radiation emitted by the aphelion cloud belt is introducing a warming of the atmosphere not accounted for in the model.

Sensitivity of the model to dust distribution

Due to the radiative effects of dust, its temporal and spatial distribution will have a large effect on other atmospheric properties. To test the sensitivity of the MGCM to the temporal and spatial distribution of dust, two independent dust schemes have been run using the UK version of the LMD MGCM. The two dust schemes used in the independent experiments are derived from assimilations of TES dust total column and assimilated dust distribution, 185° K isotherm and approximate height of cloud condensation. The seasonal evolution of zonally-averaged temperature bias at 0.5 hPa [8].

As well as comparing the two schemes with each other, we have also carried out comparisons with observations from the MCS and modelled data from the MCD, which is used as a convenient summary of model experiments from the LMD MGCM. Figure 5 compares the temperature profile near the south pole in more detail. As can be seen immediately, the profiles from the simulation with the new dust scheme and the assimilation are in much closer agreement with the MCS observations than the profile from the MCD. The lower temperature close to the pole in the simulation are apparent, but the middle atmosphere warming agrees well with the MCS plot.

As has been seen, the distribution of dust in the MGCM has a large impact on atmospheric temperature. It would also therefore be expected to influence the temporal and spatial distribution of clouds, though such simulations have not yet been carried out.

Acknowledgements

The authors thank L. Montabone and D. Muirhead for their assistance with the model simulations.