Modelling radiatively active water ice clouds in the Martian water cycle

L. Steele1, S. R. Lewis1, M. R. Patel2 and R. J. Wilson3

1Department of Physics & Astronomy, The Open University, MK7 6AA, UK
2Planetary and Space Sciences Research Institute (PSSRI), The Open University, MK7 6AA, UK
3Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA

Email: L.Steele@open.ac.uk

Introduction

Aerosols, both water ice and dust, play a key role in the Martian climate. However, our understanding of the interactions between these aerosols depends on detailed knowledge of the surface (solar ice caps, frost) in the atmosphere (vapour, ice clouds) and their distribution and properties of dust is currently incomplete.

Water ice clouds have been observed at many locations in the Martian atmosphere, and they occur in many different forms, such as polar hood clouds, ice clouds and ground fogs. The largest spatial distribution of clouds belongs to the aphelion cloud belt, which appears during northern hemisphere spring and summer each year in a zonal band between around 10° S and 30° N [1, 2].

In this poster, we demonstrate the potential impact of water ice clouds on a Mars Global Circulation Model (MGCM), and test the sensitivity of the model to varying dust opacity. We used independent model experiments and assimilations of the Thermal Emission Spectrometer (TES) temperatures and validate the model against Mars Climate Sounder (MCS) observations.

Effects of water ice clouds in MGCM simulations

It is known that cirrus clouds in the Earth’s atmosphere can scatter and absorb incoming solar radiation, and absorb and emit thermal infrared radiation, causing a warming of the atmosphere [3,4]. Therefore, due to the presence of water ice clouds in the Martian atmosphere, it is necessary to take into account their radiative effects in MGCMs.

The current LMD MGCM [5] run in the UK uses a spectral dynamical core, and includes a simplified water cycle in which there is atmospheric transport of water vapour and ice, a bulk cloud scheme, and interaction with the Martian regolith [6,7]. However, in the model run in the UK, the water ice opacity is not yet coupled with the MGCM radiation scheme, so absorption of visible/infrared radiation by the water ice clouds is not taken into account. This absorption of radiation has been identified as being potentially significant in the equatorial/middle atmosphere of Mars around aphelion, when the planet-circling cloud belt forms [8]. As can be seen in Figure 1, it appears as though the downward infrared radiation emitted by the aphelion cloud belt is introducing a warming of the atmosphere not accounted for in the model.

Sensitivity of the model to dust distribution

Due to the radiative effects of dust, its temporal and spatial distribution will have a large effect on other atmospheric properties. To test the sensitivity of the MGCM to the distribution of dust, we have run experiments with dust distributions in Mars-related studies. Figure 2 shows the difference in visible dust opacity averaged over Mars month 5 for both dust schemes. As can be seen, the 2005 dust scheme shows an increased opacity globally, particularly in the southern hemisphere poleward of around 40° S.

As well as comparing the two schemes with each other, we have also carried out comparisons with observations from the MCS and modelled data from the MCD, which is used as a convenient summary of model experiments from the MCD. The two simulations using the 2003 and 2005 dust schemes do show stronger southerly circulation than that from the MCD, but it is still weaker than in the assimilation.

Project aims

The project will model the Martian water cycle, including radiatively active water ice clouds, to interpret new observations from MCS. We will be using the latest version of the LMD MGCM, which includes the new LMD physics routines. A unique data assimilation system [10] will be used to obtain a complete, dynamically self-consistent reconstruction of the extra-polar global circulation for the complete period of the MCD mission to date. A series of diagnostic studies will be made to characterize the climatological and synoptic meteorology of Mars over seasonal and interannual timescales, including detailed case studies of events such as the formation of cyclonic weather systems. The assimilation results can be used to test the validity of the new cloud schemes introduced to the model, improving our understanding of the Martian water cycle.

Acknowledgements

The authors thank L. Montabone and D. Muirhead for their assistance with the model simulations.

References: