The Open UniversitySkip to content
 

Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS

Bonnand, Pierre; Parkinson, Ian; James, Rachael; Karjalainen, Anne-Mari and Fehr, Manuela (2011). Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26(3) pp. 528–535.

URL: http://pubs.rsc.org/en/content/articlelanding/2011...
DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1039/c0ja00167h
Google Scholar: Look up in Google Scholar

Abstract

Techniques for the separation of small quantities of Cr from carbonate material and for the analysis of stable Cr isotopes in carbonates by MC-ICP-MS are presented in this study. In comparison with previously published methods, we have developed a one-step Cr separation procedure that is relatively simple, and has a low blank (0.12–0.20 ng). Moreover, careful optimisation of the desolvating sample introduction system allows a significant increase in the sensitivity of our MC-ICP-MS technique compared to previous studies. Instrumental mass bias effects and fractionation of Cr isotopes during Cr separation are corrected using a carefully optimised 50Cr–54Cr double-spike method. Novel numerical simulations demonstrate that the effects of potential isobaric interferences from Ti, Fe and V are negligible, even if they are isotopically fractionated. Small deviations in the δ53Cr value of the NBS 979 standard between different analytical sessions are due to small deviations from exponential mass fractionation behaviour. The long-term reproducibility of δ53Cr for a spiked NBS 979 Cr isotope reference material is ±0.031‰ (2 S.D., n = 147). Analyses of carbonates reveal that they have δ53Cr values of 0.747 to 1.994‰, distinctly heavier than continental crust and the terrestrial mantle. The carbonates record Cr isotopic fractionation that may be used to understand redox reactions in the oceans. Although this study focuses on carbonate samples, our mass spectrometry technique can be applied to the analysis of any samples with low levels of Cr, including river waters and seawater.



Item Type: Journal Article
Copyright Holders: 2011 The Royal Society of Chemistry
ISSN: 0267-9477
Project Funding Details:
Funded Project NameProject IDFunding Body
Not SetNot SetLeverhulme Thrust
Not SetNot SetNERC (Natural Environment Research Council)
Not SetNot SetThermoFisher Scientific
Academic Unit/Department: Science > Environment, Earth and Ecosystems
?? scie-easc ??
Science
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 28750
Depositing User: Manuela Fehr
Date Deposited: 17 May 2011 09:00
Last Modified: 14 Nov 2012 12:13
URI: http://oro.open.ac.uk/id/eprint/28750
Share this page:

Altmetrics

Scopus Citations

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk