The Open UniversitySkip to content
 

From quantum mechanics to quantum field theory: The Hopf route

Solomon, A. I.; Duchamp, G. H. E.; Blasiak, P.; Horzela, A. and Penson, K. A. (2011). From quantum mechanics to quantum field theory: The Hopf route. Journal of Physics: Conference Series, 284 012055.

Full text available as:
Full text not publicly available
Due to copyright restrictions, this file is not available for public download
Click here to request a copy from the OU Author.
URL: http://dx.doi.org/10.1088/1742-6596/284/1/012055
Google Scholar: Look up in Google Scholar

Abstract

We show that the combinatorial numbers known as Bell numbers are generic in quantum physics. This is because they arise in the procedure known as Normal ordering of bosons, a procedure which is involved in the evaluation of quantum functions such as the canonical partition function of quantum statistical physics, inter alia. In fact, we shall show that an evaluation of the non-interacting partition function for a single boson system is identical to integrating the exponential generating function of the Bell numbers, which is a device for encapsulating a combinatorial sequence in a single function.
We then introduce a remarkable equality, the Dobinski relation, and use it to indicate why renormalisation is necessary in even the simplest of perturbation expansions for a partition function.
Finally we introduce a global algebraic description of this simple model, giving a Hopf algebra, which provides a starting point for extensions to more complex physical systems.

Item Type: Journal Article
Copyright Holders: IOP Publishing
ISSN: 1742-6588
Academic Unit/Department: Science > Physical Sciences
Item ID: 28712
Depositing User: Astrid Peterkin
Date Deposited: 09 May 2011 08:47
Last Modified: 27 Nov 2012 15:52
URI: http://oro.open.ac.uk/id/eprint/28712
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk