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Abstract

This work is part of a three year PhD project to examine how Software Visualization
(SV) can be applied to support the design and construction of Genetic Algorithms (GAs). A
user survey carried out at the start of this project identified a set of key system features
required by GA users. A visualization system embodying these features was then designed
and a prototype built. This paper describes what genetic algorithms are and how they can be
applied. It then reviews some of the survey results and their impact on the design of the
visualization system. The paper concludes with an exploration of how the resulting
prototype may be evaluated.
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1 Introduction

Genetic algorithms (GAs) are a robust type of search algorithm. Designed by John Holland at Ann
Arbour, Michigan in 1970 they are based upon the evolutionary principle of “survival of the fittest” [8] . As a
search algorithm operating in a symbolic domain, a GA generates a large quantity of search data, from which a
near optimal solution emerges. The user’s tasks in designing genetic algorithms are to:

1. Define a way of representing a problem state as a string of numbers, known as a "chromosome",

2. Construct a function capable of rating problem states (i.e. chromosomes) and returning a fitness score
(typically normalised between zero and one) and,

3. Set-up the genetic algorithm by choosing a set of selection and reproduction components based on
the problem representation used.

Only by monitoring the genetic algorithm during it's search can a user make an informed decision about the
quality of the solutions found. Software Visualization (i.e. techniques such as cinematography, graphic design,
typography and animation [9]) has been used in other domains such as prolog program development and
scientific systems design, to support the design and development processes. Applying Software Visualization
technology to the GA design process is put forward as a means for supporting the user tasks described above and
the search monitoring necessary for quality assurance.

Section two of this paper provides a description of some GA terminology and an overview of how
genetic algorithms search for solutions to user defined problems. Section three gives an overview of a survey
carried out in order to gain an insight into the problems found by people designing GAs, their opinions on some
sample visualization and interaction methods, and their ideas on how the work of a GA designer could be made
easier. This includes a description of the survey mechanism used, a summary of the responses given and their
impact on the resulting system design. Section four, the final section, presents a screen view taken from  the
resulting system design and examines how such a system could be evaluated.

2 Genetic Algorithms

In order to represent a problem state problem domain information is translated by the user into a symbolic
representation (generally using either binary or decimal numbers) on which the  genetic algorithm acts. This data
takes the form of a string of numbers referred to as a “chromosome”, the numbers' position in the chromosome is
called the “locus” and the chromosomes’ symbol values are called “alleles” (see figure 1).
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Figure 1 - An illustration of how a problem state can be represented as a string of numbers suitable for use within a GA.

An initial population (generation 0) is made up of chromosomes whose alleles have been generated using a
random number generator. These chromosomes then “evolve” to form the next generation (generation 1).
Evolution has two steps; "Selection" and "Mating". Selection for mating and is biased by the chromosomes’
fitness values to the extent that a chromosome with a high fitness value has a better chance of mating than one
with a low fitness value.

Figure 2 - An example of roulette wheel selection in which each chromosome’s chances of selection for mating is biased by
the fitness rating (a grey scale is used to associate chromosomes  with the appropriate roulette wheel section, the size of

which is defined by the chromosome’s fitness).

One example selection method is "roulette wheel selection" (figure 2, above). Here the population chromosomes
are represented as roulette wheel sections, with the size of each section being determined by the magnitude of the
corresponding chromosome's fitness rating. In order to select a chromosome for mating, the roulette wheel is
spun and whichever section the ball lands in determines which chromosome is selected.

Once the chromosomes for mating have been selected the second evolutionary step i.e. mating can
begin. Mating is carried out by the application of "genetic operators", these are processes taken from genetics
which change the features of existing chromosomes to produce new chromosomes. Two typical examples are
described here; "single point crossover" and "mutation". Single point crossover is were two chromosomes are
split at a random locus, the chromosome sections are then crossed and finally re-connected. As a result the two
new chromosomes (the children) carry some genes from each of the two older chromosomes (the parents).
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Figure 3 - An example of the three steps involved in single point crossover in order to create two new chromosomes.

As can be seen in figure 3 above the two selected chromosomes are cut at a random locus (in this case locus
eight), the two sections are then crossed, and finally these are pasted together to produce two new chromosomes.
As is shown in this example single point crossover can create both better and worse chromosomes.

Another example genetic operator used in chromosome mating is mutation. Mutation in GAs can be
controlled by the user altering the algorithm’s mutation rate (i.e. the probability of a random allele being
introduced instead of a parent’s allele).
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Figure 4 - An example of how mutation can be applied to a chromosome in order to alter its features.

The example given in figure 4 shows the occurrence of mutation on a randomly chosen allele (locus 10). The
allele's original value has been flipped in this case from a one to a zero. These selection and mating steps are
repeated until an acceptable solution is evolved. Typically the user defines an acceptable fitness rating and the
algorithm repeats the evolutionary process until an individual is found with an equivalent (or better) fitness
rating. Further information on GAs can be found in [8]  , [5] , or, [11].

3 GA User Survey

A survey of GA designers was carried out in order to gain an insight into the design process involved in applying
GAs. This was then used as a basis for the design of a GA visualization system. This section describes the survey
method used, gives an overview of the survey design, and explains some of the findings extracted from the
survey responses.

3.1 Survey Method

An electronic questionnaire was used as a survey tool to gain an insight into the work of GA users. This was
posted on three Newsnet bulletin boards known to be of interest to GA designers; comp.ai, comp.ai.alife and
comp.ai.genetic. A HTML version was posted on the world wide web with an associated link from an
evolutionary computing web site. Direct emails containing the questionnaire were sent to several GA researchers
and research groups.

3.2 Questionnaire Design

The electronic questionnaire was split into two main sections; a background section, and a query section (an
additional question seeking permission for future contact was added to the end of the questionnaire). The
background section was made up of four simple questions that invited the reader to indicate their experience of
genetic algorithms in terms of both time and areas of application, their reasons behind using genetic algorithms
and the computer environment/s they used. These background questions were intended to provide some possible
structuring methods for the responses received, such as the number of years of experience, or the problem
domain being examined.

The query section made up the body of the questionnaire. This was intended to; identify the users
difficulties, to suggest some possible GA visualizations, and to examine how interaction could be best used to
support the user. As previously mentioned the aim of any Software Visualization system is to aid human
understanding, this is only possible if the system provides support for the users difficulties, presents the
information in a salient manner and provides an appropriate amount of freedom for the user to explore and
examine the information in a useful way. The query section provided a means for identifying these features:

Questions five and six asked what if anything did the reader find difficult about setting up and
evaluating a genetic algorithm. Questions seven through to nine enquired after the possible uses of visualization
for directly and indirectly illustrating a GA. Questions ten and eleven asked about the use of interaction to aid in
the exploration of the GAs search in the problem space. The reader was asked to comment on some possible
interaction opportunities and to suggest any alternative opportunities they considered beneficial. As a final sub-
component, question twelve asked for any other suggestions on how GAs could be made easier to use.

As well as the cover page message prefixing the questionnaire, a single paragraph presenting a brief
introduction to each query section component was included within the questionnaire. This was intended not only
to guide the reader in their interpretation of the questions but also to encourage a more detailed response. The
questionnaire itself can be found on the World Wide Web (URL http://kmi.open.ac.uk/~trevor/Quest1.html).

3.3 Questionnaire Results

Nineteen completed questionnaires were received from experienced GA users. This section gives a brief
summary of some of the questionnaire results (a more complete report is given in [4] ). Some of the difficulties
found by GA users and system features intended to solve them are discussed, then some of the respondents
comments on system features suggested in the questionnaire are described, and finally the section closes with an
explanation of one of the system features requested by a respondent.



User Difficulties

As mentioned above one of the prime purposes in carrying out this design survey was to identify the difficulties
that users have in designing genetic algorithms. Two of these are described in the following sub-section.

Problem: Defining the problem representation and evaluation function

The first two questions in the query section of the questionnaire asked the respondents to describe what
difficulties if any they found with defining a suitable problem representation and constructing an effective
evaluation function, some typical responses were as follows:

 “The really tricky issue is designing the representation and the operators, not controlling or visualizing
the GA during running.”

 “This [defining the problem representation] is to my mind the most important step in any algorithm,
perhaps more important than the choice of algorithm.”

 “This [producing the evaluation function] can be a difficulty in many scientific problems; scaling is
often necessary to ensure the algorithm does not concentrate on one variable and neglect others. Usually
we find that in principle it is not too difficult to construct a suitable function, but often it must be
refined once we know the behaviour of the algorithm.”

Proposed Solution: A problem representation and evaluation function editor

One possible solution to this problem would be to provide the user with an editor in which they could construct a
representation by defining the real-world  problem features and then identifying how they map onto a string like
structure. An editor of this kind could also support the construction of the evaluation function, as the contribution
of each string component (i.e. “allele”) would be made explicit and could be visually present throughout the
evaluation function’s development. Any test cases (i.e. example chromosomes) could be evaluated and both their
fitness rating and problem specific description returned.

Problem State Description

Add Feature

Gene Definition
Chromosome Description

Gene Features
C: Third move

Type: Binary

Length: 4

0000 = 

0 000

New

B: Second move
2 Digit Binary

00 = Cooperate if opponent cooperated first move
01 = Cooperate if opponent defected first move
10 = Defect if opponent cooperated first move
11 = Defect if opponent defected first move

A: First move

0 = Cooperate
1 = Defect

1 Digit Binary

Figure 5 - An example of a problem representation editor used to input problem-specific information about a representation
of the Prisoner’s Dilemma game. A description of the prisoner’s dilemma game is given below.

Figure 5 above illustrates how some problem-specific information could be input by the GA designer. In this
way the system could provide feedback within the context of the problem being tackled. In this case an example
of the Prisoner’s Dilemma game. This is a two player strategy game in which each player plays the part of a
prisoner who must decide either to co-operate with the other prisoner and tell the police nothing of their
partnership in crime, or to defect and tell all. The four possible results correspond to different penalties against
each player. The aim is to get away with the minimum penalty. In this example the user constructs the problem
representation by adding new genes, each gene identifies a possible move. The first two genes (i.e. first two
moves) have already been specified in the example above, and these are illustrated on the in the Chromosome
Description section (top right). The user has started to define the third gene (top left) and is in the process of
identifying a set of  problem state descriptions (bottom left).



Problem: Choosing the algorithm’s parameters

Another question raised in the user survey asked the users what, if anything, they found difficult about selecting
suitable parameters for the GA, i.e. the population size, the mutation rate etc:

“This is a real crusher, this is where your package would save a lot of time. Setting parameters is an
agony for me. Every time I run the thing it takes more than a day, at the end of which all I know is that
the run didn't work. It would be nice to be able to watch the run and monitor population diversity, and
population movement. To some extent, the setting of parameters is _irreducibly_ hard. There are
theoretical methods for setting them, which work when you know a lot about the problem i.e. it is a toy
problem.”

Proposed Solution: The provision of interactive parameter control

The ability to make parameter corrections without restarting the GA may well be useful. For example, as an
algorithm converges toward a solution the user may wish to reintroduce some diversity into the search, in order
to verify that the convergence is not premature. This could be achieved by increasing the rate of mutation during
the algorithm’s execution and then reducing it again once the population had become sufficiently diverse. A
parameter dialogue in which the user could “tweak” their algorithm would provide this form of interactive
control.

Figure 6 - An example of a parameter dialogue box.

An example of a dialogue box used for editing an algorithm’s parameters is shown in figure 6 above, here the
user can select and edit any of the algorithm’s parameters.

Suggested Features

In addition to trying to identify the areas of difficulty in GA design, the questionnaire also asked the respondents
to  think of some advantages and disadvantages to a series of suggested visualization and interaction methods.
The respondent’s comments were then used to gauge the importance of these features, some of which are
described below.

Suggestion: The provision of interactive system control

One of the forms of interaction suggested in the questionnaire was for the user to have control over the
algorithm’s execution and visualization. This is a common feature of many visualization systems which enables
the user to monitor the effect of each program step (e.g. TPM [7], Balsa II [2] , Tango [10]).

Typical Responses:

The respondents’ comments associated with this type of control mechanism were favourable:

 “very useful - like an omniscient, but impotent viewer.”

 “Excellent.”

 “All of those options (bar one) are catered for in GAmeter, so I think they are useful! :) I know why
you may want to step backward, but that’s a lot of overhead on the GA.”

Resulting Design: Visualization and Execution Control Panels

A visualization control panel could be used to flick back and forward through the algorithm’s evolutionary
history (figure 7). An execution control panel could provide the user with control over the algorithm’s execution,
the user could start and stop the algorithm’s execution. A facility to save the algorithm’s design, solution and/or



evolutionary history would enable a record to be kept of each algorithm design. A facility to load a previously
saved algorithm’s data (either the algorithm’s design, solution or history) would enable a new user to view
previous users work and use this either as an educational aid, or as a model for their own algorithm design.

Figure 7 - An example of a visualization control panel. Icons for going back to the start of the search, jumping back ten
generations, stepping back one generation, stepping forward one generation, jumping forward ten generations, and going to

the end (respectively) are shown.

The figure above illustrates one example of a control panel; the visualization control panel, with which a user
can; go back to the start of the algorithm’s evolutionary search, jump back ten generations, step back one
generation, step forward one generation, jump forward ten generations, or go forward to the end of the
algorithm’s evolutionary search (respectively).

Suggestion: A population fitness rating versus generation number graph

The survey questionnaire also asked users to comment on the suitability of a fitness rating versus generation
graph (an example of which is shown in figure 8 below). This view illustrates the change in the populations’
fitness rating across successive generations and is often used in GA texts to illustrate an algorithm’s evolution
(e.g. [8], [5] , [1]).

Figure 8 - An example of a  fitness (y axis) versus generation number (x axis) graph illustrating the best fitness rating (top
line), average fitness rating (middle line) and worst fitness rating (bottom line) per generation.

Typical Responses:

This was reported to be a useful illustration of an algorithm’s rate of improvement. However, it was also noted
that this isn’t the whole picture:

“Need more than this; need to know the local structure of fitness changes throughout the population.”

 “Too much emphasis can be placed on the graph without going into any detail as to why that pattern
occurred.”

 “One often wants a more detailed understanding of what is happening in the population than this graph
can give.”

Although a three line graph containing the best, average and worst fitness ratings gives an impression of the
range of the fitness ratings in each population, it gives no indication of the population diversity in terms of the
number of solutions being considered.

Resulting Design: Complementary Views

Perhaps this view along with some form of population chromosome view (i.e. a view of the population’s sample
points in the search space, see figure 9) could be used to gain a more complete representation of an algorithm’s
evolution (e.g. [6], [3]). The strength of the fitness rating versus generation graph may be it’s ability to
highlighting important points in a solution’s evolution which the user could then take a closer look at using a
population chromosome view.



Figure 9 - An example population chromosome view showing the population’s sample points in the search space.

An example of a population chromosome view is shown in figure 9 above. The circles on the right of the view
show the sample points of the current generation (generation 0), the sliders to their left can be used to vary the
range of generations and fitness ratings shown. The circles’ diameter is used here to illustrate the individual’s
fitness ratings, the larger the diameter the larger the fitness. The scatter plot on the right uses a mapping of the
chromosome binary strings into a two dimensional space in which similar chromosomes occupy similar regions
of the space.

Requested views

In addition to asking users to describe their difficulties in designing GAs, and to comment upon some suggested
visualization and interaction methods, the survey also asked the respondents for further ideas, things that the felt
may make their work easier. One example of such an idea is discussed below.

An on-screen estimation of the time required to find a solution

One suggestion put forward by a respondent was to display an estimate of the time required to find an acceptable
solution:

“A good practical thing about making them easier to use -- assuming we're considering a typical
industrial setting -- is an on-screen estimation, probably dynamic, on how long it will take to reach a
given desired fitness. A large scale approximation based on fitness graph gradients would be fine.”

Resulting Design: An Estimated Time to Solution View

An example of an on-screen estimation of the time required to find a solution is given in figure 10. This shows a
prediction of the generation number at which an acceptable solution will be found and an estimated time to
arrival based on multiplying the computer’s average time to evolve a generation by the estimated number of
generations required.

Figure 10 - An example of an “estimated time of arrival” view, including an estimate of the generation number at which a
solution will be found and the time required to find the solution.



4 GA Visualization System Evaluation

This section shows an example screen view of a GA visualization system, and suggests two possible approaches
that may be taken in order to evaluate such a system. Comments on these approaches are welcomed.

Figure 11 - An example of a possible screen view of the GA visualization system. This illustrates the; parameter dialogue box
(top left), the user’s visualization control panel (middle left), an estimated time to arrival view (middle left), a population
chromosome view showing the current population’s sample of the search space (top right), and a fitness versus generation

number graph (bottom right). Each described in the previous section, as well as a text display showing the current
population’s best and worst individuals (bottom left).

In order to evaluate such a system an empirical study is to be undertaken. Although  a variety of GA
development environments exist there is no community standard environment to which this work could be
compared. Instead users write their own software specifically for their use. This makes a comparative study
difficult.

One initial plan for the evaluation is to make the software freely available on the condition that, after a
few weeks of orientation with the system, users provide some feedback on its usefulness. This could be in the
form of a questionnaire which asks the user to rate the system’s support for the problem areas found in the initial
user survey. However, without any common system to compare the GA visualization system to, this data may
well be inconsistent across the sample group.

Another proposed evaluation method is to compare the use of the GA visualization system to the use of
the user’s own system, by asking the users first, to solve a problem using their own environment, and then (after
a period of orientation) solve a second similar problem using the GA visualization system. The users’ work
would be recorded on video and a post-test interview could be conducted to gain further details on the user’s
opinions of their own system and the GA visualization system.

Finding an effective evaluation method is seen as a difficult problem but essential in order to validate
this project. Any comments on the above evaluation approaches or alternatives would be welcomed.
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