The Open UniversitySkip to content

Semantic parsing for biomedical event extraction

Zhou, Deyu and He, Yulan (2011). Semantic parsing for biomedical event extraction. In: 9th International Conference on Computational Semantics, 12-14 Jan 2011, Oxford, UK.

Google Scholar: Look up in Google Scholar


We propose a biomedical event extraction system, HVS BioEvent, which employs the hidden vector state (HVS) model for semantic parsing. Biomedical events extraction needs to deal with complex events consisting of embedded or hierarchical relations among proteins, events, and their textual triggers. In HVS-BioEvent, we further propose novel machine learning approaches for event trigger word identification, and for biomedical events extraction from the HVS parse results. Our proposed system achieves an F-score of 49.57% on the corpus used in the BioNLP’09 shared task, which is only two points lower than the best performing system by UTurku. Nevertheless, HVSBioEvent outperforms UTurku on the extraction of complex event types. The results suggest that the HVS model with the hierarchical hidden state structure is indeed more suitable for complex event extraction since it can naturally model embedded structural context in sentences.

Item Type: Conference or Workshop Item
Copyright Holders: 2011 Not known
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Knowledge Media Institute (KMi)
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Centre for Research in Computing (CRC)
Item ID: 28545
Depositing User: Kay Dave
Date Deposited: 18 Apr 2011 08:54
Last Modified: 15 Dec 2018 06:39
Share this page:

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU