The Open UniversitySkip to content
 

Learning conditional random fields from unaligned data for natural language understanding

Zhou, Deyu and He, Yulan (2011). Learning conditional random fields from unaligned data for natural language understanding. In: 33RD European Conference on Information Retrieval (ECIR 2011), 18 - 21 Apr 2011, Dublin, Ireland.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1007/978-3-642-20161-5_28
Google Scholar: Look up in Google Scholar

Abstract

In this paper, we propose a learning approach to train conditional random fields from unaligned data for natural language understanding where input to model learning are sentences paired with predicate formulae (or abstract semantic annotations) without word-level annotations. The learning approach resembles the expectation maximization algorithm. It has two advantages, one is that only abstract annotations are needed instead of fully word-level annotations, and the other is that the proposed learning framework can be easily extended for training other discriminative models, such as support vector machines, from abstract annotations. The proposed approach has been tested on the DARPA Communicator Data. Experimental results show that it outperforms the hidden vector state (HVS) model, a modified hidden Markov model also trained on abstract annotations. Furthermore, the proposed method has been compared with two other approaches, one is the hybrid framework (HF) combining the HVS model and the support vector hidden Markov model, and the other is discriminative training of the HVS model (DT). The proposed approach gives a relative error reduction rate of 18.7% and 8.3% in F-measure when compared with HF and DT respectively.

Item Type: Conference Item
Copyright Holders: 2011 Springer
Extra Information: Advances in Information Retrieval 33rd European Conference on IR Research, ECIR 2011, Dublin, Ireland, April 18-21, 2011. Proceedings, Volume 6611/2011, page 283-288
Academic Unit/Department: Knowledge Media Institute
Interdisciplinary Research Centre: Centre for Research in Computing (CRC)
Related URLs:
Item ID: 28544
Depositing User: Kay Dave
Date Deposited: 18 Apr 2011 08:27
Last Modified: 21 Jun 2014 03:42
URI: http://oro.open.ac.uk/id/eprint/28544
Share this page:

Altmetrics

Scopus Citations

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk