Copy the page URI to the clipboard
He, Yulan
(2011).
DOI: https://doi.org/10.1007/978-3-642-20161-5_22
URL: http://www.ecir2011.dcu.ie/program/
Abstract
In this paper, we present a novel weakly-supervised method for crosslingual sentiment analysis. In specific, we propose a latent sentiment model (LSM) based on latent Dirichlet allocation where sentiment labels are considered as topics. Prior information extracted from English sentiment lexicons through machine translation are incorporated into LSM model learning, where preferences on expectations of sentiment labels of those lexicon words are expressed using generalized expectation criteria. An efficient parameter estimation procedure using variational Bayes is presented. Experimental results on the Chinese product reviews show that the weakly-supervised LSM model performs comparably to supervised classifiers such as Support vector Machines with an average of 81% accuracy achieved over a total of 5484 review documents. Moreover, starting with a generic sentiment lexicon, the LSM model is able to extract highly domainspecific polarity words from text.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 28543
- Item Type
- Conference or Workshop Item
- Keywords
- Latent sentiment model (LSM); cross-lingual sentiment analysis; generalized expectation; latent Dirichlet allocation
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Knowledge Media Institute (KMi)
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- Centre for Research in Computing (CRC)
- Copyright Holders
- © 2011 The Author
- Depositing User
- Kay Dave