The Open UniversitySkip to content

Polar spaces and embeddings of classical groups

Gill, Nick (2007). Polar spaces and embeddings of classical groups. New Zealand Journal of Mathematics, 36 pp. 175–184.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (174kB)
Google Scholar: Look up in Google Scholar


Given polar spaces (V,β) and (V,Q) where V is a vector space over a field K, β a reflexive sesquilinear form and Q a quadratic form, we have associated classical isometry groups. Given a subfield F of K and an F-linear function L : KF we can define new spaces (V,Lβ) and (V,LQ) which are polar spaces over F.
The construction so described gives an embedding of the isometry groups of (V,β) and (V,Q) into the isometry groups of (V,Lβ) and (V,LQ).In the finite field case under certain added restrictions these subgroups are maximal and form the so called field extension subgroups of Aschbacher's class C3.
We give precise descriptions of the polar spaces so defined and their associated isometry group embeddings. In the finite field case our results give extra detail to the account of maximal field extension subgroups given by Kleidman and Liebeck.

Item Type: Journal Item
Copyright Holders: 2007 The Author
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 28190
Depositing User: Nick Gill
Date Deposited: 17 Feb 2011 12:08
Last Modified: 08 Dec 2018 15:56
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU