Copy the page URI to the clipboard
Vines, S. K.; Gilks, W. R. and Wild, P.
(1996).
DOI: https://doi.org/10.1007/BF00143554
Abstract
Bayesian random effects models may be fitted using Gibbs sampling, but the Gibbs sampler can be slow mixing due to what might be regarded as lack of model identifiability. This slow mixing substantially increases the number of iterations required during Gibbs sampling. We present an analysis of data on immunity after Rubella vaccinations which results in a slow-mixing Gibbs sampler. We show that this problem of slow mixing can be resolved by transforming the random effects and then, if desired, expressing their joint prior distribution as a sequence of univariate conditional distributions. The resulting analysis shows that the decline in antibodies after Rubella vaccination is relatively shallow compared to the decline in antibodies which has been shown after Hepatitis B vaccination.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 28179
- Item Type
- Journal Item
- ISSN
- 0960-3174
- Keywords
- Bayesian inference; convergence; Gibbs sampling; longitudinal data; Markov chain; Monte Carlo; parametric transformation; random effect; Rubella antibody
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 1996 Chapman & Hall
- Depositing User
- Sarah Frain