The Open UniversitySkip to content
 

Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment

Brandstätter, Franz; Brack, André; Baglioni, Pietro; Cockell, Charles S.; Demets, René; Edwards, Howell G. M.; Kurat, Gero; Osinski, Gordan R.; Pillinger, Judith M.; Roten, Claude-Alain and Sancisi-Frey, Suzy (2008). Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment. Planetary and Space Science, 56(7) pp. 976–984.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1016/j.pss.2007.12.014
Google Scholar: Look up in Google Scholar

Abstract

The generic concept of the artificial meteorite experiment STONE is to fix rock samples bearing microorganisms on the heat shield of a recoverable space capsule and to study their modifications during atmospheric re-entry. The STONE-5 experiment was performed mainly to answer astrobiological questions. The rock samples mounted on the heat shield were used (i) as a carrier for microorganisms and (ii) as internal control to verify whether physical conditions during atmospheric re-entry were comparable to those experienced by “real” meteorites. Samples of dolerite (an igneous rock), sandstone (a sedimentary rock), and gneiss impactite from Haughton Crater carrying endolithic cyanobacteria were fixed to the heat shield of the unmanned recoverable capsule FOTON-M2. Holes drilled on the back side of each rock sample were loaded with bacterial and fungal spores and with dried vegetative cryptoendoliths. The front of the gneissic sample was also soaked with cryptoendoliths.
The mineralogical differences between pre- and post-flight samples are detailed. Despite intense ablation resulting in deeply eroded samples, all rocks in part survived atmospheric re-entry. Temperatures attained during re-entry were high enough to melt dolerite, silica, and the gneiss impactite sample. The formation of fusion crusts in STONE-5 was a real novelty and strengthens the link with real meteorites. The exposed part of the dolerite is covered by a fusion crust consisting of silicate glass formed from the rock sample with an admixture of holder material (silica). Compositionally, the fusion crust varies from silica-rich areas (undissolved silica fibres of the holder material) to areas whose composition is “basaltic”. Likewise, the fusion crust on the exposed gneiss surface was formed from gneiss with an admixture of holder material. The corresponding composition of the fusion crust varies from silica-rich areas to areas with “gneiss” composition (main component potassium-rich feldspar). The sandstone sample was retrieved intact and did not develop a fusion crust. Thermal decomposition of the calcite matrix followed by disintegration and liberation of the silicate grains prevented the formation of a melt.
Furthermore, the non-exposed surface of all samples experienced strong thermal alterations. Hot gases released during ablation pervaded the empty space between sample and sample holder leading to intense local heating. The intense heating below the protective sample holder led to surface melting of the dolerite rock and to the formation of calcium-silicate rims on quartz grains in the sandstone sample.

Item Type: Journal Article
Copyright Holders: 2008 Elsevier Ltd.
ISSN: 0032-0633
Academic Unit/Department: Science > Physical Sciences
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 27310
Depositing User: Charles Cockell
Date Deposited: 25 Jan 2011 16:19
Last Modified: 25 Jan 2011 16:19
URI: http://oro.open.ac.uk/id/eprint/27310
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk