Stainless steel weld metal designed to mitigate residual stresses

How to cite:

For guidance on citations see FAQs.

© 2009 Maney Publishing (Published by Maney on behalf of the Institute of Materials, Minerals and Mining)

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1179/136217109X437178

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Stainless steel weld metal designed to mitigate residual stresses

A. A. Shirzadi¹, H. K. D. H. Bhadeshia*¹, L. Karlsson² and P. J. Withers³

There have been considerable efforts to create welding consumables which on solid state phase transformation partly compensate for the stresses which develop when a constrained weld cools to ambient temperatures. All of these efforts have focused on structural steels which are ferritic. In the present work, alloy design methods have been used to create a stainless steel welding consumable which solidifies as δ ferrite, transforms almost entirely into austenite which then undergoes martensitic transformation at a low temperature of about 220°C. At the same time, the carbon concentration has been kept to a minimum to avoid phenomena such as sensitisation. The measured mechanical properties, especially toughness, seem to be significantly better than commercially available martensitic stainless steel welding consumables, and it has been demonstrated that the use of the new alloy reduces distortion in the final joint.

Keywords: Phase transformation, Residual stress, Stainless steel, Martensitic, Transformation plasticity

Introduction

Residual stresses are an anathema in welds because they are associated with distortion,¹–⁶ they limit the magnitudes of the external stress that a weld can support and influence the life of the joint in a variety of scenarios.⁷–⁹ There are a number of groups developing welding consumables capable of mitigating the residual stresses that develop when the liquid metal filling a joint solidifies and contracts.¹⁰–²⁴ The mechanism of stress cancellation relies on the solid state transformation of the weld metal into bainite or martensite at a sufficiently low temperature, such that the transformation plasticity cancels any strain due to thermal contraction. It is believed that the extent of this relief is dependent on the selection of crystallographic variants of the transformation product which are thermodynamically favoured in the particular environment of the accumulating residual stress.²⁵

All previous work has focused on welding materials for ferritic steels containing relatively low concentrations of solutes. In contrast, the purpose of the present work was to develop a corresponding alloy for welding austenitic stainless steels. The weld metal must therefore contain a critical concentration of chromium in order to ensure a ‘stainless’ character through the spontaneous formation of a protective chromia film provided a trace of oxygen or oxidising agent is present. It must at the same time be able to transform into martensite at a relatively low temperature, so that the resulting plasticity can be exploited to compensate for any accumulated stress.

Design criteria

A suitable weld metal could be based on a martensitic stainless steel. Although such alloys are available commercially, it will be demonstrated later that they do not meet the set of requirements specified here:

(i) the chromium concentration must be maintained in excess of 12 wt-% to ensure the stainless character of the weld metal
(ii) the carbon concentration must be minimal to ensure toughness and to reduce the risk of precipitating chromium carbides²⁶–²⁹
(iii) from past experience, the martensite start temperature M_S must be kept low, in the range 150–250°C in order to ensure that the transformation is not exhausted before ambient temperature is reached. Otherwise thermal contraction leads to the accumulation of tensile stress as the weld continues to cool after transformation is exhausted.¹⁰
(iv) Since the carbon concentration must be minimised, other solutes have to be exploited to suppress M_S
(v) to fully exploit transformation plasticity, the alloy must be capable of becoming completely austenitic at high temperatures
(vi) the solidification of stainless steels is classified as austenitic or ferritic when the liquid completely freezes into one of these phases; two additional modes, austenitic–ferritic and ferritic–austenitic refer to the leading phase during solidification, with the trailing phase growing behind the main solidification front.³⁰–³² The hot cracking susceptibility of welds is greatly

¹University of Cambridge, Materials Science and Metallurgy, Cambridge CB2 3QZ, UK
²ESAB AB, Central Research Laboratories, SE 40277 Göteborg, Sweden
³University of Manchester, School of Materials, Grosvenor St., Manchester M1 7HS, UK
*Corresponding author, email hkdb@cam.ac.uk

© 2009 Institute of Materials, Minerals and Mining
Published by Maney on behalf of the Institute
Received 27 February 2009; accepted 19 March 2009
DOI 10.1179/136217109X437178
Science and Technology of Welding and Joining 2009 VOL 14 NO 6 559
affected by the solidification mode and the often unavoidable impurity content (S, P), with the greatest tendency to cracking occurring when austenite is the leading phase. An important criterion is therefore to ensure that the designed alloy solidifies to δ ferrite. This condition limits the amount of austenite stabilising elements such as nickel that can be added to the weld metal.

Alloy design

Martensitic transformation begins when the free energy change $\Delta G^\circ \delta$ for austenite to change into ferrite of the same composition, equals a critical value $\Delta G^\circ C^{\delta}$. The former value can be calculated using MTDATA and the SGTE database; the critical free energy change, which depends on solute content, can be estimated from Ref. 36. The method therefore allows the M_S temperature to be estimated as a function of chemical composition.

There is a difficulty in including silicon in the calculations since for stainless steels, the thermodynamic databases have been shown to lead to a gross over-estimation of the δ ferrite content. The silicon (<1 wt-%) was therefore neglected in the calculations. Indeed, a substantial improvement in the results was obtained when silicon was excluded from the list of accounted elements (Fe, C, Mn, Cr, Ni, Mo, P, S). The phases allowed are austenite, ferrite, cementite $M_3\text{Cr}_6$, $M_2\text{C}_3$, $M_6\text{C}_3$, and $M_7\text{C}_3$, where the “M” stands for metal atoms. $M_3\text{C}$ and $M_7\text{C}_3$ are omitted because they are not, according to the calculations, stable phases at equilibrium.

In conducting the calculations the composition of a commercially available martensitic stainless steel electrode designated OK84-52, was used as a base and the compositions of candidate alloys were varied over the ranges listed in Table 1, bearing in mind the design criteria listed above. Figure 1 illustrates the influence of varying composition on the martensite start temperature. The required reduction in carbon concentration to less than 0.03 wt-% has the consequence of raising M_S to an unacceptably high value, so it has to be balanced using substitutional solutes. Although increasing the chromium concentration does reduce the M_s temperature, Fig. 4 shows that it then becomes impossible to get the fully austenitic state necessary to subsequently obtain a fully martensitic microstructure. The chromium content cannot of course be reduced to less than that in OK84-52 if the stainless character is to be maintained, so its concentration was maintained at $12-9$ wt-% in all subsequent designs. Manganese and nickel are austenite stabilisers and after numerous calculations alloy 1 ($1\cdot5\text{Mn–}4\text{Ni…}$) and alloy 2a ($1\cdot2\text{Mn–}6\cdot1\text{Ni…}$) were designed to be fully ferritic following solidification, and fully austenitic over a large temperature range above 1050 K, as illustrated in Fig. 3. The calculated equilibrium liquidus–solidus temperatures of alloys 1 and 2a are $1770–1750$ K and $1760–1730$ K respectively.

The sequence of alloy development and comparative studies is illustrated in Fig. 4 with details discussed later in the text.

Experimental alloys

Alloys were made as 800 g melts using a vacuum arc furnace having the chemical compositions listed in Table 1. Cylindrical samples of 8 mm diameter and 12 mm length were prepared for dilatometry using a Thermecastor thermomechanical simulator. Each sample was austenitised at 1100 C for 10 min and then was cooled at a rate of 10 K s$^{-1}$ to obtain a fully martensitic microstructure. The optical microstructures observed were martensitic and comparisons made against samples quenched in water or in liquid nitrogen from the austenitisation temperature confirmed this interpretation (Fig. 5).

An offset method is used to ensure that M_S is determined objectively, i.e. independent investigators should reach the same conclusions given identical data. This is because the initiation of transformation is identified by a fixed strain of 1 vol.-% of martensite forming at room temperature. The uncertainty of measurement is determined by the standard error in fitting a straight line to the dilatometric strain versus temperature curve before the onset of transformation. Figure 6 shows typical results with the M_S temperatures determined to be $327±13$ C and $216±2$ C for alloys 1 and 2a respectively. The corresponding calculated values

| Table 1 Chemical compositions (wt-%) of alloys studied* |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | C | Cr | Ni | Mn | Mo | P | S | Si |
| Range studied theoretically | 0-16 0-03 | 12-9 20-0 | 0-05 6-00 | 0-37 3-00 | 0-06 1-00 | 0-009 0-009 | 0-07 |
| Alloy 1 (800 g melt) | 0-01 | 12-9 | 4-00 | 1-50 | 0-06 | 0-009 | 0-07 |
| Alloy 2 (800 g melt) | … | 13-6 | 5-9 | 1-7 | 0-01 | … | … | 0-7 |
| Alloy 2a single pass weld using 800 g melt | 14-0 | 7-3 | 1-6 | 0-5 | … | … | … | 0-7 |
| Austenitic stainless steel base plate | … | 17-0 | 9-7 | 1-6 | 2-0 | … | … | 0-5 |
| C | 0-014 | 12-66 | 5-24 | 1-36 | 0-10 | 0-002 | 0-006 | 0-76 |
| Commercial martensitic multipass weld | 0-013 | 11-99 | 6-20 | 1-06 | 1-39 | 0-002 | 0-006 | 0-71 |
| Metal cored alloy 2b multipass weld | 0-024 | <0-001 | 0-01 | 0-27 | 0-053 | 0-0004 | 0-037 | 0-026 |
| Commercial martensitic multipass weld | 0-016 | 0-003 | 0-43 | 0-021 | 0-047 | 0-0006 | 0-034 | 0-026 |
| Austenitic solid wire OK Autrod 308LSi | 0-03 | 19-5 | 10-0 | 1-8 | … | 0-8 | … | … |

*The first row shows the range of concentrations studied to calculate the M_S temperatures; the first number in each column of this row corresponds to a commercially available martensitic stainless steel welding alloy with the commercial designation OK84-52. Silicon was neglected as an input in the M_S calculations. The chemical compositions were determined using combustion analysis for all cases where the minor element (C,S,N,O) are reported, whereas the others were measured using energy dispersive X-ray analysis on a scanning electron microscope. The commercial metal cored martensitic alloy is a laboratory grade similar to OK Tubrod 15-53.
are somewhat different, with an underestimation in the case of alloy 1 (261°C) and overestimation in the case of alloy 2a (232°C). Further experiments were focused on alloy 2a with the lower measured transformation temperature.

Satoh test

This is a test designed to show the evolution of stress as a constrained sample cools from an elevated temperature. A thermomechanical fatigue (TMF) testing machine was used for the Satoh test. Special adapters were designed to hold the rod shaped samples of alloy 2a with 3 mm diameter and 8 cm length in order to assess the capability of the alloy in mitigating the residual stresses. The samples were heated by induction up to 1100°C and kept at that temperature for about 2 min. The TMF machine was programmed to keep the

![Graph showing Ms vs Carbon, Chromium, Manganese, and Nickel](image)

Notes:
- **a** effect of carbon; **b** effect of chromium; **c** effect of manganese; **d** effect of nickel at two levels of carbon
- **1** Calculated martensite start temperatures: single point in each figure represents commercial welding consumable OK84-52 (Table 1); where appropriate, carbon concentration used in calculations is indicated in wt-%
- **2** Calculated austenite fraction as function of temperature: presence of silicon is neglected in these estimates
- **3** Calculated austenite content of alloy 1 (0.01C–12.9Cr–4Ni–1.5Mn, wt-%) and alloy 2a (0.01C–13Cr–6.12Ni–1.2Mn, wt-%): full compositions are listed in Table 1; two arrows on right are solidus temperatures, 1750 and 1730 for alloys 1 and 2a respectively
load at a zero level by compensating for the thermal expansion of the rods during heating. The grips of the machine were locked just before switching off the induction heating system. In order to maintain a fast cooling rate, compressed air was blown onto the sample until it reached room temperature.

It is important to note that there is a temperature gradient along the sample with the hottest part in the centre and coldest at the grips. The temperatures reported here are from a thermocouple attached to the centre of the sample, i.e. the hottest part. During cooling, phase transformation begins first in the part of the specimen which is away from the centre and hence the drop in stress due to transformation plasticity is recorded before the whole of the sample reaches the M_S temperature.

As can be seen from Fig. 7, tensile stress accumulates as the constrained sample cools from 1100°C. Martensitic transformation is stimulated on reaching about 280°C and the resulting transformation plasticity compensates for the accumulated stress, until the transformation is essentially exhausted. After that a small amount of stress accumulates due to the thermal contraction as the sample cools towards ambient temperature. This experiment shows the capability of the martensite in this stainless steel to act in the intended manner.

Experimental weld metals

Equilibrium phase diagram calculations indicate that alloy 2a should solidify completely to δ ferrite before its transformation into austenite (Fig. 3). It is, however, possible that solidification during welding occurs without equilibrium. For example, it is well known that austenitic solidification can occur if the cooling rate is large enough. It is therefore essential to investigate the solidification microstructure in the welded state.

The investigation of actual weld metal was conducted in two stages, first using the cast alloy 2a to make a bare electrode for a single pass weld using the tungsten inert gas technique. After evaluating the results, a corresponding metal cored wire (alloy 2b) was manufactured in order to fabricate welds for distortion as well as mechanical property characterisations, as described later.

Small scale weld

The purpose of the first welding experiment was simply to assess the solidification microstructure using a small facility at the University of Cambridge. Samples of alloy 2a were used for arc welding two austenitic stainless steel plates (Table 1), the joint preparation being a V shape with a 90° included angle, penetrating half the thickness.

5 Vickers hardness (10 kg) measured on samples which were water quenched, quenched in liquid nitrogen and cooled in a dilatometer at 10 K s$^{-1}$: error bars represent range of measurements; notice exaggerated scale; differences in hardness between different samples are small

6 Dilatometric data: arrows indicate 95% confidence limits in determination of M_S temperature; for alloy 1, M_S is determined to be 327 ± 13 °C and for alloy 2a, 216 ± 2 °C

7 Satoh test on sample of alloy 2a, showing how transformation plasticity compensates for stress accumulated in constrained sample as it cools from austenitic phase
Published by Maney Publishing (c) IOM Communications Ltd

and with abutting surfaces on the lower half. The welding was carried out using a Murex 201i welder; this equipment does not allow the welding voltage to be monitored and the welding is conducted manually. It is not therefore possible to measure the heat input, but the welding current was 94 A, the welding speed was approximately 0.5 mm s\(^{-1}\) (the open circuit voltage is 65 V). The final weld is illustrated in Fig. 8 and it was particularly noticeable that there was almost no distortion after the weld cooled and the plates were released from their clamps.

The welding process introduced some dilution in the weld metal (Table 1); the hardness of the weld deposit, in the range 333–348 HV, is consistent with a martensitic microstructure which is illustrated in Fig. 9a. It is also evident from Fig. 9b that the amount of \(\delta\) ferrite left in the weld is too small to form a continuous network. This is important since networks of this kind are known to lead to poor toughness.

Larger welds

Metal cored wire (alloy 2b) was manufactured at ESAB AB (Sweden) with chemical composition intended to be similar to that of alloy 2a. The composition of alloy 2b in the as welded condition, using the gas tungsten arc technique, is listed in Table 1 as ‘metal cored alloy 2b multipass weld’.

Distortion experiments

Distortion measurements were conducted by fabricating single pass square butt joints on 304L stainless steel base plates, and as an alternative, mild steel base plates, using the gas metal arc welding technique. Each of the base plates had dimensions 200 × 50 × 6 mm. There was no opening at the butting surfaces before welding, and no clamping during welding to deposit a single bead using a heat input of 1 kJ mm\(^{-1}\) and a shielding gas of Ar + 2%CO\(_2\). Note from Table 1 that there was no significant enhancement of carbon due to the use of CO\(_2\) in the shielding gas. Table 2 and Fig. 10 show that the new welding consumable alloy 2b in all cases significantly minimises distortion when compared with a non-transforming austenitic weld metal (OK Autrod 308LSi).

Mechanical properties

To assess the tensile and Charpy properties, all weld metal tests were done by preparing multipass welds in...
the ISO 2560 geometry, again using the gas metal arc technique, on 20 mm thick mild steel plates which were buttered to reduce dilution effects. In each case, the weld consisted of a total of 13 beads, in six layers (three beads in the final layer), at 27 V, 302 A direct current and a welding speed of 45 cm min$^{-1}$, wire diameter 1.4 mm and a wire feed speed of 9.3 m min$^{-1}$. A shielding gas of Ar containing 2% CO$_2$ was used at a flow rate of 20 L min$^{-1}$. The interpass temperature was in the range 100–125$^\circ$C.

The measured mechanical property data are listed in Table 3. It is seen that the properties of alloy 2b compare well with a commercial martensitic welding consumable, while its toughness at room temperature is significantly higher. The overall hardness was in the range 317–369 HV10 with an average of 342 HV10 (Table 3). The results show that there is no major variation in the hardness values of the different layers, primarily because the low carbon concentration ensures that tempering effects due to the heat pulses associated with multipass welding are minimised.

Figure 11 shows the microstructure of the alloy 2b multipass weld, consisting essentially of martensite but with a very small amount of δ ferrite. There were no significant variations noted as a function of position within the fusion zone.

Conclusions

Stainless steel welding alloys have been designed with a view to minimising the distortion due to residual stresses that develop during the cooling of a welded assembly. The alloy design procedures have ensured solidification as δ ferrite, then transform almost completely into austenite and finally into martensite. The remnants of δ ferrite do not form continuous networks in the final microstructure, leading to good toughness. Furthermore, the martensite start temperature has been suppressed to about 220$^\circ$C, a feature essential in order to ensure the accumulation of thermal contraction stresses following the exhaustion of the austenite. The transformation plasticity associated with the formation of martensite under the influence of the stresses that develop when a weld cools, has been shown experimentally to be capable of reducing the distortion in the final weld.

Work is now being initiated to characterise in detail, using neutron diffraction, the distribution of residual stress in welded plates.

Acknowledgements

We are grateful for support from the UK Ministry of Defence and also thank Håkan Arcini and Eva-Lena Bergquist at ESAB AB (Sweden) for their technical support with the metallography and mechanical tests.

<table>
<thead>
<tr>
<th>Welding wire</th>
<th>Wire diameter, mm</th>
<th>Angular distortion at start</th>
<th>Angular distortion at finish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Austenitic base</td>
<td>Mild steel base</td>
</tr>
<tr>
<td>Alloy 2b welding wire</td>
<td>1.4</td>
<td>2.4$^\prime$</td>
<td>1.7$^\prime$</td>
</tr>
<tr>
<td>Austenitic OK Autrod 308LSi</td>
<td>1.2</td>
<td>5.5$^\prime$</td>
<td>7.1$^\prime$</td>
</tr>
<tr>
<td>Martensitic alloy</td>
<td>1.4</td>
<td>4.5$^\prime$</td>
<td>4.3$^\prime$</td>
</tr>
<tr>
<td>Weld hardness, HV5</td>
<td></td>
<td>Austenitic base</td>
<td>Mild steel base</td>
</tr>
<tr>
<td>Alloy 2b</td>
<td>200–225</td>
<td>330–345</td>
<td></td>
</tr>
<tr>
<td>Austenitic OK Autrod 308LSi</td>
<td>160–175</td>
<td>360–385</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Welding wire</th>
<th>Wire diameter, mm</th>
<th>0.2% proof strength</th>
<th>Tensile strength</th>
<th>Elongation</th>
<th>Impact energy, J</th>
<th>Hardness, HV10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MPa</td>
<td>MPa</td>
<td>%</td>
<td>20$^\circ$C -20°C</td>
<td>Min.</td>
</tr>
<tr>
<td>Alloy 2b</td>
<td>838</td>
<td>1069</td>
<td>17-6</td>
<td>72</td>
<td>53</td>
<td>317</td>
</tr>
<tr>
<td>Martensitic alloy</td>
<td>699</td>
<td>1094</td>
<td>15-8</td>
<td>57</td>
<td>52</td>
<td>323</td>
</tr>
</tbody>
</table>

Figure 11: Alloy 2b multipass weld, etched using Kallings reagent: microstructure is predominantly martensitic with very small amount of δ ferrite indicated by arrow.