Copy the page URI to the clipboard
Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S. and Märk, T. D.
(2010).
DOI: https://doi.org/10.1016/j.nimb.2010.05.005
Abstract
Vapor jets of DNA and RNA bases (adenine, cytosine, thymine, and uracil) from an oven with a capillary exit have been studied in the intermediate regime between molecular and viscous flow corresponding to Knudsen numbers in the range 0.1 < Kn < 10. The temperature control method ensured stationary flow. Assuming the Knudsen hypothesis, the pressure of sublimated molecules in the oven was determined as a function of temperature and the transmission probability of the capillary (Clausing factor). Thus it was possible to relate the oven temperature and pressure to the total flux through the capillary, deter- mined by measuring the total mass of DNA/RNA base molecules condensed on a cold surface intersecting the jet. The angular distribution of molecules in the jet has been also studied experimentally using an optical interference method. The measured profiles are in good agreement with Troïtskii’s [Sov. Phys. JETP 7 (1962) 353] analytical law for (cos h)3/2 angular dependence in the intermediate regime with error func- tions associated with the mean free path between intermolecular collisions.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 25755
- Item Type
- Journal Item
- ISSN
- 0168-583X
- Project Funding Details
-
Funded Project Name Project ID Funding Body Not Set Not Set Agence Nationale de la Recherche [ANR-06-BLAN-0319-02] Not Set Not Set PICS CNRS [2290] Not Set Not Set CNRS-CNRST Convention [17689] - Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- Physics
- Copyright Holders
- © 2010 Elsevier B.V.
- Related URLs
- Depositing User
- Sam Eden