The Open UniversitySkip to content

Environmental dependence of 8 μm luminosity functions of galaxies atz~ 0.8: comparison between RXJ1716.4+6708 and the AKARI NEP-deep field

Goto, T.; Koyama, Y.; Wada, T.; Pearson, C.; Matsuhara, H.; Takagi, T.; Shim, H.; Im, M.; Lee, M. G.; Inami, H.; Malkan, M.; Okamura, S.; Takeuchi, T. T.; Serjeant, S.; Kodama, T.; Nakagawa, T.; Oyabu, S.; Ohyama, Y.; Lee, H. M.; Hwang, N.; Hanami, H.; Imai, K. and Ishigaki, T. (2010). Environmental dependence of 8 μm luminosity functions of galaxies atz~ 0.8: comparison between RXJ1716.4+6708 and the AKARI NEP-deep field. Astronomy & Astrophysics, 514, article no. A7.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (157kB)
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Aims. We aim to reveal environmental dependence of infrared luminosity functions (IR LFs) of galaxies at z ~ 0.8 using the AKARI satellite. AKARI's wide field of view and unique mid-IR filters help us to construct restframe 8 μm LFs directly without relying on SED models.

Methods. We construct restframe 8 μm IR LFs in the cluster region RXJ1716.4+6708 at z = 0.81, and compare them with a blank field using the AKARI north ecliptic pole deep field data at the same redshift. AKARI's wide field of view (10' × 10') is suitable to investigate wide range of galaxy environments. AKARI's 15 μm filter is advantageous here since it directly probes restframe 8 μm at z ~ 0.8, without relying on a large extrapolation based on a SED fit, which was the largest uncertainty in previous work.

Results. We have found that cluster IR LFs at restframe 8 μm have a factor of 2.4 smaller L* and a steeper faint-end slope than that of the field. Confirming this trend, we also found that faint-end slopes of the cluster LFs becomes flatter and flatter with decreasing local galaxy density. These changes in LFs cannot be explained by a simple infall of field galaxy population into a cluster. Physics that can preferentially suppress IR luminous galaxies in high density regions is required to explain the observed results.

Item Type: Journal Item
Copyright Holders: 2010 ESO
ISSN: 1432-0746
Extra Information: 5 pp.
Keywords: galactic evolution; galactic interaction; starburst galaxies; peculiar galaxies; galactic formation; infrared galaxies
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Space
Item ID: 25311
Depositing User: Astrid Peterkin
Date Deposited: 10 Dec 2010 14:03
Last Modified: 07 Dec 2018 22:22
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU