Initial highlights of the HOBYS key program, the Herschel imaging survey of OB young stellar objects

How to cite:

For guidance on citations see FAQs.

© 2010 ESO

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1051/0004-6361/201014690

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
1. Introduction and first constraints from HOBYS

Our knowledge of high-mass (OB, \(M_* \geq 8 \, M_\odot \)) star formation is still rather schematic, but an evolutionary sequence of their earliest phases is starting to emerge. Bright IRAS sources embedded within massive envelopes have been recognized as HMPOs containing evolved high-mass protostars (e.g. Beuther et al. 2002). Cold massive dense cores associated with weak mid-infrared emission, but with clear signposts of OB-type protostars, have been qualified as IR-quiet and observed to harbor high-mass class 0 protostars (Motte et al. 2007; Bontemps et al. 2010b). Controversy remains about the existence and the lifetime of high-mass analogs of prestellar cores, since infrared dark clouds are numerous (Simon et al. 2006) but only a few harbor starless, massive, and dense enough cores (e.g. Motte et al. 2007). Large surveys covering the far-infrared to (sub)millimeter continuum regime are required to improve the statistics of present studies and constrain models proposed for the formation of high-mass stars (e.g. Krumholz et al. 2007; Bonnell & Bate 2006).

The “Herschel imaging survey of OB Young Stellar objects” (HOBYS, see http://hobys-herschel.cea.fr) is a guaranteed time key program jointly proposed by the SPIRE and PACS consortia, and the Herschel Science Centre. It will use the SPIRE and PACS cameras (Griffin et al. 2010; Poglitsch et al. 2010) of the Herschel satellite (Pilbratt et al. 2010) to image essentially all of the regions forming OB-type stars at distances less than 3 kpc from the Sun. The 70/160 \(\mu m \) or 100/160 \(\mu m \) PACS and 250/350/500 \(\mu m \) SPIRE images from HOBYS will provide an unbiased census of massive young stellar objects (YSOs) and trace the large-scale emission of the surrounding clouds. This survey will yield, for the first time, accurate bolometric luminosity and envelope mass estimates for homogeneous and complete samples of OB-type YSOs. It will also reveal spatial variations in the cloud temperature and assist in quantifying the importance of external triggers in the star formation process.

The Rosette molecular complex and the RCW 120 \(H II \) region were selected as targets for the science demonstration phase. Of the 9 high-mass star-forming regions in HOBYS, the Rosette molecular cloud (\(2 \times 10^5 \, M_\odot, 1.6 \) kpc away) is well-known for its interaction with an expanding \(H II \) region powered by the OB cluster NGC 2244. Among the first results, (1) Schneider et al. (2010) measure a clear dust temperature gradient and a potential age gradient of YSOs through the Rosette molecular cloud; (2) Di Francesco et al. (2010) show that the mass spectrum of Rosette clumps is different from the stellar initial mass function; (3) Hennemann et al. (2010) constrain the evolutionary stage of low- to high-mass protostars revealed in Rosette. Located only 1.3 kpc away, RCW 120 is a bubble-shaped \(H II \) region at the periphery of which triggered star formation has been clearly established. Among the first results of HOBYS, Zavagno et al. (2010) identify, in RCW 120, the first massive class 0 protostar formed by means of the collect and collapse process.

2. Herschel observations

The Rosette molecular cloud was observed on October 20, 2009 using the parallel mode with a scanning speed of 20’’/s
simultaneously with SPIRE at 250/350/500 μm and PACS at 70/160 μm. The RCW 120 H II region was imaged on October 9, 2009 with PACS at 100/160 μm and on September 12, 2009 with SPIRE at 250/350/500 μm, using a scanning speed of 30′′/s. The data reduction is described in Schneider et al. (2010), Hennemann et al. (2010), and Zavagno et al. (2010).

Figures 1a, b present three-color (blue: 70 or 100 μm / green: 160 μm / red: 250 μm) images of the Rosette molecular complex and the RCW 120 H II region. The sensitivities achieved in these images allow detection of compact YSOs down to 5σ ≈ 0.3 M⊙ at 160 μm. Noise measurements were taken in low-cirrus noise parts of the maps, and they correspond to several times the instrumental sensitivity for point sources (see caption of Fig. 4). The Herschel images of the Rosette molecular cloud are sensitive to spatial scales ranging from ~0.05–0.2 pc (corresponding to a resolution of ~6′′–25′′) to ~40 pc (i.e., the ~1.5″ spatial filter used for data reduction). The resulting spatial dynamic range of SPIRE images (~200) is 4 times greater than for ground-based submillimeter observations with the best spatial dynamics (e.g. Motte et al. 2007 with MAMBO-2). PACS images display an unmatched angular resolution at far-infrared wavelengths (down to ~6″ at 70 μm) and have a spatial dynamic range up to 1000.

3. Massive dense cores in the Rosette complex

Our main goal is to investigate potential sites of star formation, we thus focus here on small-scale (~0.1 pc) dense cloud fragments. We applied a source extraction technique based on a multi-resolution analysis (Motte et al. 2007). We filtered out the spatial scales larger than 0.5 pc using the MRE algorithm (Starck & Murtagh 2006) and applied the GaussClumps program (Kramer et al. 1998) to each Herschel image independently. Above the 5σ level given in Fig. 4, this method identifies ~4000 to ~900 sources at 70 μm and 500 μm, respectively. The individual catalogs from each of the 5 wavebands were cross-linked with the TopCat tool allowing offsets of one half-beam size (i.e. 6″ to 20″) from the PACS 70 μm positions for sources identified at 160–500 μm. Slightly larger offsets were used for starless dense cores to account for their emission generally being less centrally peaked.

Our analysis in the Rosette yields an MRE-GCL catalog of dense cores with sizes 0.02–0.3 pc at 160 μm (see Fig. 5a) and fluxes measured in most, if not all, Herschel wavebands. A range of six across the angular resolution of the Herschel images, the source extraction technique tended to measure larger (deconvolved) sizes at 500 μm than at 160 μm. Such behavior is found in radiative transfer modeling of protostellar envelopes: the colder the dust dominating at 500 μm, the farther away the emission from the heating protostar. However, this observed effect is strong for both pre- and protostellar dense cores and is stronger in clustered environments. This size-wavelength relation is thus most likely related to the classical distribution of gas under the influence of gravity observed with optically-thin column density tracers (Motte & André 2001; Beuther et al. 2002)\(^1\). In order to keep the best of the PACS angular resolution, we define here the nominal size of dense cores as the deconvolved FWHM size derived from a 2D-Gaussian fit to the 160 μm image. We then scaled down the SPIRE 250 μm, 350 μm, and 500 μm integrated fluxes measured for these dense cores assuming the S_ν(< r) ∝ r relation.

\(^1\) Protostellar envelopes and the outer part of prestellar cores with ρ(r) ∝ r^{-3} and r′_FWHM(r) ∝ r^{-0.4} – r^0 distributions display optically thin emission with intensity laws close to S_ν(< r) ∝ r.
We computed SEDs for the 46 most massive dense cores using the aforementioned Herschel fluxes and the Spitzer/MIPS and IRAC fluxes of Balog et al. (in prep.) (see Figs. 2a, b). The mass of each dense core was determined by fitting simple graybody models to the submillimeter component of their SED (i.e. 4 observed fluxes from 500 μm to 160 μm). From the ground, a single submillimeter flux and a pre-defined dust temperature are generally taken but Herschel provides the unique opportunity to directly measure the mass-averaged dust temperature and the mass of each dense core. We determine a temperature varying from 12 to 40 K and a mass from 0.8 M⊙ to 39 M⊙ (see Fig. 5a), assuming a dust opacity per unit (gas + dust) mass of κv = 0.1 cm² g⁻¹ × (ν/1000 GHz)⁻¹. No measurement longward of 500 μm can currently constrain the emissivity index (β) that was set to 2. While graybodies are the correct models for fitting starless dense cores and the outer cold part of protostellar envelopes, they fail to fit fluxes measured at 70 μm and shorter (e.g. Fig. 2b). More complex radiative transfer modeling, such as those proposed by Robitaille et al. (2007), are needed to estimate other protostellar characteristics, such as the mass and luminosity of the stellar embryo. However, this is not within the scope of this paper. The bolometric luminosity of each massive dense core was estimated by integrating their fluxes below the SED from 500 μm to 3.6 μm.

The starless or protostellar nature of the dense cores in Rosette was determined by searching for pointlike Spitzer 24 μm sources, which lie within the Herschel dense cores (see Balog et al. in prep. and Poulton et al. 2008). We followed the definition by Motte et al. (2007) for the massive (≥20 M⊙) dense cores harboring high-mass protostars. They are qualified as IR-quiet (i.e. young, and have accreted less than 8 M⊙) and IR-bright (i.e. more evolved) when they have a bolometric luminosity that is lower or respectively higher than 10³ L⊙, corresponding to that of a B3 star on the main sequence.

4. Discussion and conclusion

The HOBYS program was designed to essentially survey all of the massive star-forming complexes out to 3 kpc. Integrating the estimated star formation rate in the Galactic disk (McKee & Williams 1997) within a volume of a 3 kpc radius suggests a star formation rate of ~0.2 M⊙/yr in the selected molecular cloud complexes. With such an estimate, and assuming a standard initial mass function (Kroupa 2001) and a lifetime of 1 × 10⁵ yr (Motte et al. 2007; Russeil et al. 2010), the HOBYS survey should reveal about 250 high-mass protostars (from IR-quiet to IR-bright).

Fig. 2. SEDs built from Herschel and Spitzer fluxes of: a) one massive prestellar core and b) one intermediate-mass protostellar dense core. Their submillimeter components are compared to graybody models, while a model by Robitaille et al. (2007) is fitted to the complete SED of b).

Given the mass of the Rosette molecular complex, and assuming a similar star formation efficiency for all the HOBYS clouds, we expect ~5 high-mass protostars in the Herschel image of Rosette. Above 19 M⊙ (the limit set to encompass all the massive IR-bright dense cores), we identified 6 protostellar and 3 prestellar dense cores with radii ~0.18 pc and masses between ~20–40 M⊙ (see Figs. 5a–c).

4.1. High-mass protostellar dense cores

The two most luminous of these sources, AFGL 961 and IRAS 06308+0402 (see Fig. 5c), have a mass of ~22 M⊙ and luminosity of ~1× and 4 × 10³ L⊙. They correspond to two luminous IRAS point sources previously identified by Cox et al. (1990) as precursors of OB stars. From the mass and luminosity derived by these Herschel observations, we are classified as IR-bright, high-mass protostellar dense cores (see Sect. 3).

Four other protostellar dense cores are as massive as these IR-bright dense cores, but they are far less luminous (~15–75 L⊙) and cooler at 15 K (compared with 29 K). They are therefore good candidates for hosting early stage, high-mass protostars, although follow-up observations in search of powerful outflows, hot cores, and/or maser emission are needed to ascertain their nature. Higher resolution studies of these massive protostellar dense cores confirm that the majority of them are dominated, in terms of both mass and luminosity, by a single massive protostar (Williams et al. 2009; Hennemann et al. 2010).

4.2. Discovery of intermediate-/high-mass prestellar cores

We detected three massive starless cores with slightly larger sizes and higher masses (~0.22 pc, ~30 M⊙) and with cooler temperatures (13 K, see Fig. 2a) than for protostellar cores. Given their high densities (~10²⁰ cm⁻³) and cooler temperatures, they probably are gravitationally bound and represent the high-mass analog of low-mass prestellar cores. These three objects are among the most massive prestellar cores, since virtually none have been detected in surveys of the Cygnus X and NGC 6334 complexes (Motte et al. 2007; Russeil et al. 2010).

A handful of starless dense cores were also discovered to have warm temperatures: ~1–9 M⊙, ~0.14 pc, ~27 K (see Fig. 5a). The nature of these objects is as yet unclear, but they do not seem to correspond to remnant cloud surrounding an already formed cluster. If gravitationally bound, these warm, massive, but not centrally peaked, dense cores could concentrate their mass, cool down, and then form the next generation of intermediate- to high-mass stars in the Rosette. They have high
Fig. 3. a) Herschel/PACS 160 μm and b) Spitzer/MIPS 24 μm images of the bright IRAS source associated to the PL1 embedded cluster. Ellipses outline the 2×FWHM size of dense cores.

Acknowledgements. SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCCEF (Spain); SNSB (Sweden); STFC (UK); and NASA (USA). PACS has been developed by a consortium of institutes led by MPI (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAT/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA, CNES (France), ASI/INAF (Italy), and CICYT/MCYT (Spain). Part of this work was supported by the ANR (Agence Nationale pour la Recherche) project “PROBeS”, number ANR-08-BLAN-0241.

References
Starck, J.-L., & Murtagh, F. 2006, Astronomical image and data analysis (Berlin: Springer), Astronomy and astrophysics library
Fig. 4. Herschel far-infrared to submillimeter images of the Rosette molecular complex: a) PACS 70 μm with angular resolution and rms of $HBPW \approx 5.5'' \times 6.5''$ and $1\sigma \approx 6\,\text{MJy/sr}$; b) PACS 160 μm with $HBPW \approx 10.7'' \times 13''$ and $1\sigma \approx 5.5\,\text{MJy/sr}$; c) SPIRE 250 μm with $HBPW \approx 18.1''$ and $1\sigma \approx 2.5\,\text{MJy/sr}$; d) SPIRE 350 μm with $HBPW \approx 25.2''$ and $1\sigma \approx 1.2\,\text{MJy/sr}$; e) SPIRE 500 μm with $HBPW \approx 36.9''$ and $1\sigma \approx 0.5\,\text{MJy/sr}$. A common SPIRE/PACS area of $1' \times 1'$ is achieved with $1'45'' \times 1'30''$ SPIRE and PACS images offset by $\sim 23'$. The images were flux-calibrated according to the correction factors of Griffin et al. (2010) and Poglitsch et al. (2010): $\times 1.05$ at 70 μm, $\times 1.29$ at 160 μm, $\times 1.02$ at 250 μm, $\times 1.05$ at 350 μm, and $\times 0.94$ at 500 μm. The conversion to MJy/sr unit is done by multiplying the HIPE output images a)-e) by ~ 4150, ~ 1040, ~ 115, ~ 59.1, and ~ 27.6.

Fig. 5. The 46 most massive dense cores of the Rosette molecular cloud: a) mass-radius, b) mass-luminosity diagrams, and c) spatial distribution on the 160 μm map as a function of their estimated nature and evolutionary state. The OB cluster powering the NGC 2244 nebula is marked with stars and the five $>10^3\,L_\odot$ IRAS sources are indicated in red and pink.