The Open UniversitySkip to content
 

Tellurium isotopic composition of the early solar system - A search for effects resulting from stellar nucleosynthesis, 126Sn decay and mass- independent fractionation

Fehr, Manuela A.; Rehkämper, Mark; Halliday, Alex N.; Wiechert, Uwe; Hattendorf, Bodo; Günther, Detlef; Ono, Shuhei; Eigenbrode, Jennifer L. and Rumble III, Douglas (2005). Tellurium isotopic composition of the early solar system - A search for effects resulting from stellar nucleosynthesis, 126Sn decay and mass- independent fractionation. Geochimica et Cosmochimica Acta, 69(21) pp. 5099–5112.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1016/j.gca.2005.04.020
Google Scholar: Look up in Google Scholar

Abstract

New precise Te isotope data acquired by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS) are presented for selected extraterrestrial and terrestrial materials. Bulk samples of carbonaceous, ordinary and enstatite chondrites as well as the metal and sulfide phases of iron meteorites were analyzed to search for nucleosynthetic isotope anomalies and to find evidence of formerly live 126Sn, which decays to 126Te with a half-life of 234,500 yr. None of the meteorites show evidence of mass dependent Te isotope fractionations larger than 2‰ for δ 126/128Te. Following internal normalization of the data to 125Te/128Te, the Te isotope ratios of all analyzed meteorites were found to be identical to a terrestrial standard, within uncertainties. This provides evidence that the regions of the solar disk that were sampled during accretion of the meteorite parent bodies were well mixed and homogeneous on a large scale, with respect to Te isotopes. The data acquired for bulk carbonaceous chondrites indicate that the initial 126Sn/ 118Sn ratio of the solar system was <4 × 10-5, but this is dependent on the assumption that no redistribution of Sn and Te occurred since the start of the solar system. Five Archean sedimentary sulfides that display both mass dependent and mass-independent isotope effects for S yield internally normalized Te isotope data, which indicate that mass-independent Te isotope effects are absent. The mass dependent fractionations in these samples are constrained to be less than ~1‰ for δ126/128Te.

Item Type: Journal Article
Copyright Holders: 2005 Elsevier Ltd
ISSN: 0016-7037
Project Funding Details:
Funded Project NameProject IDFunding Body
Not SetNot SetETH Forschungskomission and the Schweizerische Nationalfonds (SNF)
Academic Unit/Department: Science > Environment, Earth and Ecosystems
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 25124
Depositing User: Manuela Fehr
Date Deposited: 07 Apr 2011 14:11
Last Modified: 07 Apr 2011 14:11
URI: http://oro.open.ac.uk/id/eprint/25124
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk