The Open UniversitySkip to content

Exploring English lexicon knowledge for Chinese sentiment analysis

He, Yulan; Alani, Harith and Zhou, Deyu (2010). Exploring English lexicon knowledge for Chinese sentiment analysis. In: CIPS-SIGHAN Joint Conference on Chinese Language Processing, 28-29 Aug 2010, Beijing, China.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (398kB)
Google Scholar: Look up in Google Scholar


This paper presents a weakly-supervised method for Chinese sentiment analysis by incorporating lexical prior knowledge obtained from English sentiment lexicons through machine translation. A mechanism is introduced to incorporate the prior information about polarity bearing words obtained from existing sentiment lexicons into latent Dirichlet allocation (LDA) where sentiment labels are considered as topics. Experiments on Chinese product reviews on mobile phones, digital cameras, MP3 players, and monitors demonstrate the feasibility and effectiveness of the proposed approach and show that the weakly supervised LDA model performs as well as supervised classifiers such as Naive Bayes and Support vector Machines with an average of 83% accuracy achieved over a total of 5484 review documents. Moreover, the LDA model is able to extract highly domain-salient polarity words from text.

Item Type: Conference or Workshop Item
Copyright Holders: 2010 The Authors
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Knowledge Media Institute (KMi)
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Centre for Research in Computing (CRC)
Related URLs:
Item ID: 25092
Depositing User: Yulan He
Date Deposited: 07 Dec 2010 10:17
Last Modified: 11 Dec 2018 09:57
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU