The Open UniversitySkip to content
 

Gas in the protoplanetary disc of HD 169142: Herschel's view

Meeus, G.; Pinte, C.; Woitke, P.; Montesinos, B.; Mendigutía, I.; Riviere-Marichalar, P.; Eiroa, C.; Mathews, G. S.; Vandenbussche, B.; Howard, C. D.; Roberge, A.; Sandell, G.; Duchêne, G.; Ménard, F.; Grady, C. A.; Dent, W. R. F.; Kamp, I.; Augereau, J. C.; Thi, W. F.; Tilling, I.; Alacid, J. M.; Andrews, S.; Ardila, D. R.; Aresu, G.; Barrado, D.; Brittain, S.; Ciardi, D. R.; Danchi, W.; Fedele, D.; de Gregorio-Monsalvo, I.; Heras, A.; Huelamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mora, A.; Morales-Calderon, M.; Nomura, H.; Pantin, E.; Pascucci, I.; Phillips, N.; Podio, L.; Poelman, D. R.; Ramsay, S.; Riaz, B.; Rice, K.; Solano, E.; Walker, H.; White, G. J.; Williams, J. P. and Wright, G. (2010). Gas in the protoplanetary disc of HD 169142: Herschel's view. Astronomy & Astrophysics, 518, article no. L124.

Full text available as:
[img] PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (241Kb)
DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1051/0004-6361/201014557
Google Scholar: Look up in Google Scholar

Abstract

In an effort to simultaneously study the gas and dust components of the disc surrounding the young Herbig Ae star HD 169142, we present far-IR observations obtained with the PACS instrument onboard the Herschel Space Observatory. This work is part of the open time key program GASPS, which is aimed at studying the evolution of protoplanetary discs. To constrain the gas properties in the outer disc, we observed the star at several key gas-lines, including [OI] 63.2 and 145.5 μm, [CII] 157.7 μm, CO 72.8 and 90.2 μm, and o-H2O 78.7 and 179.5 μm. We only detect the [OI] 63.2 μm line in our spectra, and derive upper limits for the other lines. We complement our data set with PACS photometry and 12/13CO data obtained with the Submillimeter Array. Furthermore, we derive accurate stellar parameters from optical spectra and UV to mm photometry. We model the dust continuum with the 3D radiative transfer code MCFOST and use this model as an input to analyse the gas lines with the thermo-chemical code PRODIMO. Our dataset is consistent with a simple model in which the gas and dust are well-mixed in a disc with a continuous structure between 20 and 200 AU, but this is not a unique solution. Our modelling effort allows us to constrain the gas-to-dust mass ratio as well as the relative abundance of the PAHs in the disc by simultaneously fitting the lines of several species that originate in different regions. Our results are inconsistent with a gas-poor disc with a large UV excess; a gas mass of 5.0 ± 2.0 × 10-3Mʘ is still present in this disc, in agreement with earlier CO observations.

Item Type: Journal Article
Copyright Holders: 2010 ESO
ISSN: 1432-0746
Extra Information: 5 pp.
Keywords: planetary systems; circumstellar matter; pre-main sequence stars; protoplanetary disks; infrared planetary systems
Academic Unit/Department: Science > Physical Sciences
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 25086
Depositing User: Ann McAloon
Date Deposited: 07 Dec 2010 10:26
Last Modified: 01 Aug 2014 01:07
URI: http://oro.open.ac.uk/id/eprint/25086
Share this page:

Altmetrics

Scopus Citations

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk