
Open Research Online
The Open University’s repository of research publications
and other research outputs

Arguing security: validating security requirements using
structured argumentation
Conference or Workshop Item

How to cite:

Haley, Charles B.; Moffett, Jonathan D.; Laney, Robin and Nuseibeh, Bashar (2005). Arguing security: validating
security requirements using structured argumentation. In: Third Symposium on Requirements Engineering for
Information Security (SREIS’05) held in conjunction with the 13th International Requirements Engineering Conference
(RE’05), 29 Aug 2005, Paris, France.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/policies.html

Arguing Security:
Validating Security Requirements Using Structured Argumentation

Charles B. Haley Jonathan D. Moffett Robin Laney Bashar Nuseibeh

Department of Computing
The Open University

Walton Hall, Milton Keynes, MK7 6AA, UK
{C.B.Haley, J.Moffett, R.C.Laney, B.Nuseibeh} [at] open.ac.uk

Abstract

This paper proposes using both formal and structured
informal arguments to show that an eventual realized
system can satisfy its security requirements. These
arguments, called 'satisfaction arguments', consist of two
parts: a formal argument based upon claims about
domain properties, and a set of informal arguments that
justify the claims. Building on our earlier work on trust
assumptions and security requirements, we show how
using satisfaction arguments assists in clarifying how a
system satisfies its security requirements, in the process
identifying those properties of domains that are critical to
the requirements.

1. Introduction

Like all requirements, security requirements benefit
from early understanding of their completeness and
impact on a system, and from validation that the system
can respect the requirements. In previous work [16], we
(and others – e.g. [13]) have argued that security
requirements may usefully be described as constraints on
the functions of a system, converting them from quality
requirements to functional requirements. We have
proposed that one begins by eliciting security goals for
assets that are implicated in the system. Next, for each
function of the system, the analyst determines which
assets are involved in that function. The analyst then
determines the security requirement(s) to apply to that
function in order to satisfy the goal(s).

Key validation steps for such a process are the abilities
to show that 1) the proposed security goals adequately
express what the stakeholders need, 2) the proposed
security requirements adequately satisfy the goals, and 3)
the system can satisfy the security requirements.

The contribution of this paper is the use of structured
informal and formal argumentation for the third validation
step: to convince a reader that a system can satisfy the
security requirements laid upon it. The paper proposes a

two-part argument structure for security requirement
satisfaction arguments. The first part is a formal argument
to prove a system can satisfy its security requirements,
using claims about system behavior, assuming that these
claims are true. The second part consists of structured
informal arguments to support the claims (and the
assumptions behind the claims) made when constructing
the formal argument. Building on our earlier work on trust
assumptions [8] and security requirements, we show how
two-step satisfaction arguments assist with determining
security-relevant domain properties, and how inconsistent
and implausible assumptions about them affect the
security of a system.

The paper is structured as follows. In Section 2 we
elaborate on the motivation for our work, drawing upon
related contributions from the areas of design rationale,
safety cases, and domain analysis. Section 3 summarizes
our approach to problem analysis and introduces the two
arguments upon which we base the work presented in this
paper. Section 4 shows how these arguments are used to
construct satisfaction arguments when reasoning from
security constraints to problem context diagrams. Section
5 presents a discussion and evaluation. Finally, Section 6
concludes and discusses directions for future work.

2. Motivation and Background

Our work is related to, and builds upon, research on
design rationale and argument capture, on safety
requirements analysis, and more generally on ideas behind
problem domain analysis [10, 25].

2.1 Design rationale and argument capture
Design rationale is principally concerned with

capturing how one arrived at a decision, alternate
decisions, or the parameters that went into making the
decision [15]. For example, Buckingham Shum [3]
focuses on how rationale (argument) is visualized,
especially in collaborative environments. Potts and Bruns
[21], and later Burge and Brown [4] discuss capturing

how decisions were made, which decisions were rejected,
and the reasons behind these actions. Mylopoulos et al
[18] present a way to represent formally knowledge that
was captured in some way, without focusing on the
outcome of any decisions. Ramesh and Dhar [22] describe
a system for “capturing history in the upstream part of the
life cycle.” Fischer et al [7] suggest that the explicit
process of argumentation can itself feed into and benefit
design. Finkelstein and Fuks [6] suggest that the
development of specifications by multiple stakeholders,
who hold disparate views, may be achieved through an
explicit dialogue that captures speech acts, such as
assertions, questions, denials, challenges, etc. The
representation of the dialogue is then a rationale for the
specifications constructed. The common element in all of
the above work is the capture over time of the thoughts
and reasons behind decisions. Whether the decisions
satisfy the needs is not the primary question.

When analyzing security requirements, the ultimate
goal is to convince a reader that the security requirements
can be satisfied, and that nothing is omitted that could
result in the requirements not being satisfied. The process
used is relevant only as it relates to completeness.
Optimality is not part of the argument. Of course, we are
not saying that there is no use in having the history that
lead to the final arguments; this history will certainly be
useful if the arguments fail to convince, or if the situation
changes.

2.2 Safety cases
Kelly [12] argues that “a safety case should

communicate a clear, comprehensive and defensible
argument that a system is acceptably safe to operate in a
particular context.” He goes on to show the importance of
the distinction between argument and evidence. An
argument calls upon appropriate evidence to convince a
reader that the argument holds. Attwood and Kelly use the
same principles in [2], where they take the position that
argument forms a bridge between requirements and
specification, permitting capture of sufficient information
to realize rich traceability.

A similar situation exists with regard to security
requirements. Combining the two ideas, argument for
safety cases and using arguments for traceability, we
paraphrase Kelly’s quote presented above as: “a security
satisfaction argument should communicate a clear,
comprehensive and defensible argument that a system is
secure enough to operate in its context.”

The techniques proposed by Kelly are not directly
applicable to security without modification, primarily
because the techniques are focused around objective
evidence, component failure, and accident, rather than
subjective reasoning, subversion, and malicious intent.

2.3 Problem domain analysis
Zave and Jackson in [25], and Jackson in [10], argue

that one should construct a correctness argument for a
system, where the argument is based on known and
desired properties of the domains involved in the problem.
To quote Jackson, “Your [correctness] argument must
convince yourself and your customer that your proposed
machine will ensure that the requirement is satisfied in the
problem domain.” This position is the same as Kelly’s,
with the proviso that Kelly’s arguments focus equally on
all domains, with no special emphasis on the machine.

A similar situation exists with regard to security
requirements. Two significant distinctions must be made,
however. The first is that it is very difficult to talk about
correctness when discussing security. One can convince
the reader that the proposed system meets the needs, but it
is far more difficult to prove that the system is correct.
The distinction between convince and prove (or show) is
important. It is not possible to prove the negative – that
violation of security goals do not exist – but one can be
convincing that sufficient outcomes have been addressed.
We propose using argumentation to this end: to convince a
reader that the security requirements can be satisfied.

3. Argumentation Driven Problem Analysis

This section summarizes our approach to problem
analysis, and describes the two kinds of argument.

3.1. Problem Frames

We use an approximation of Jackson’s problem frames
diagrams [10] to represent the system context for a given
system function. We do not attempt to identify a particular
problem class, but instead enter phenomena and
requirements into a system problem diagram. We take this
approach because we are not attempting to analyze the
wider development problem. We are instead looking at the
interaction between domains from a security perspective,
which requires us to determine which domains can trigger
or see which phenomena.

Figure 1 presents an example problem diagram,
showing, for a simple Human Resources system, the
domains involved and the phenomena exchanged between
the domains. As noted above, the diagram is not intended
to conform to a known problem class, but it does show the
requirement (the function), the constrained domain(s), the
inputs, and the phenomena shared between the domains:
the domains that are involved in the system within which
the machine operates to realize the necessary function.
The behavior of the system is specified by the sequencing
and interplay of phenomena between the domains.

The notion of claim is central to the work described in
this paper. To ground the idea of ‘claim’ in Jackson’s
problem analysis, system requirements are optative

statements, or statements about what we wish to be true,
about the behavior of a system, and therefore are claims
about future system behavior that should be argued (and in
fact, this is what correctness arguments do). For example,
the optative statement “the system shall do X” states a
claim that under the conditions described in the problem,
the system will do X. The correctness argument
establishes the validity of this claim.

Indicative statements, or statements that are
“objectively true” [10], are used as grounds in a Jackson-
style correctness argument. Grounds, “circumstance[s] on
which an opinion, inference, argument, statement, or
claim is founded,”1 are used to justify the claims that the
optative statements will be true. In the process, one might
find that the indicative statements must also be argued,
converting them from grounds in an argument to claims
made by a sub-argument. The arguments continue
recursively, with grounds becoming claims, until the
analyst chooses to terminate the recursion.

3.2. Trust Assumptions & Arguments

Our earlier work extended the problem frames
approach with trust assumptions [8], which are claims
about the behavior or the membership of domains
included in the system, where the claims are made in order
to satisfy a security requirement. These claims represent
an analyst’s trust that the domains will be as described.
Trust assumptions are in the end the analyst’s opinion, and
therefore assumed to be true. Said another way, trust
assumptions are unsubstantiated grounds used in security
satisfaction arguments. Because trust assumptions are not
argued, they stop the grounds-to-claim recursion.

The trust assumption work has revealed the need to
adopt a more structured approach to security satisfaction
arguments. We wish to satisfy two goals: 1) that given a
collection of domain properties and trust assumptions
(accepted as true), one can show that a system is secure,
and 2) to create a uniform structure for the satisfaction

1 Definition 5C of ‘ground’ from The Oxford English Dictionary,

Second Edition, 1989

argument so that the trust assumptions that terminate the
recursion are made explicit. We satisfy these goals by
splitting the satisfaction argument into two parts: a formal
outer argument that is first constructed, and informal
structured inner arguments that are constructed to support
the outer argument.

3.2.1 The Outer Argument
The formal outer argument uses claims about the

behavior of the system (interplay of phenomena) to
demonstrate that the security requirement (the constraint)
is satisfied. It is expressed using an appropriate logic,
where the premises are formed from domain behavior
properties and the conclusion is the satisfaction of the
security requirement. We use propositional logic in this
paper, resulting in the outer argument being a proof of the
form:

(domain property premises)├─ security requirement

3.2.2 The Inner Arguments
The inner argument is a set of informal arguments to

recursively support the claims used in the outer argument.
We propose a form inspired by the work of Toulmin [23],
one of the earliest advocates and developers of a formal
structure for human reasoning. Toulmin style arguments
appear to be well suited for our purpose, since they
facilitate the capture of relationships between domain
properties (grounds in the formal argument), the trust
assumptions that eventually support these grounds, and
reasons why the argument may not be valid.

Toulmin et al [24] describe arguments as consisting of:
1. Claims, specifying the end point of the argument, or

what one wishes to convince the world of.
2. Grounds, providing any underlying support for the

argument, such as evidence, facts, common
knowledge, etc.

3. Warrants, connecting and establishing relevancy
between the grounds and the claims. A warrant
explains how the grounds are related to the claim, not
the validity of the grounds themselves.

4. Backing, establishing that the warrants are themselves
trustworthy. These are, in effect, grounds for
believing the warrants.

5. Modal qualifiers, establishing within the context of
the argument the reliability or strength of the
connections between warrants, grounds, and claims.

6. Rebuttals, describing what might invalidate any of the
grounds, warrants, or backing, thus invalidating the
support for the claim.

Toulmin et al summarize the above six items as follows
[24; pg 27]: “The claims involved in real-life arguments
are, accordingly, well founded only if sufficient grounds
of an appropriate and relevant kind can be offered in their
support. These grounds must be connected to the claims
by reliable, applicable, warrants, which are capable in
turn of being justified by appeal to sufficient backing of

Provide HR data
requested by user
- Only to HR staff

B
Users

Personal
Information
Machine +
HR Data

a

a: U!persNumber
 HR!persData

Phenomena
label

Phenomena description

Domain

Requirement

Figure 1 – HR data retrieval problem

the relevant kind. And the entire structure of argument put
together out of these elements must be capable of being
recognized as having this or that kind and degree of
certainty or probability as being dependent for its
reliability on the absence of certain particular
extraordinary, exceptional, or otherwise rebutting
circumstances.” Toulmin et al propose a diagram for
arguments that indicates how the parts fit together. See
Figure 2.

Newman and Marshall show in [19] that the ‘pure’
Toulmin form suffers because the fundamental recursive
nature of the argument is obscured. Grounds may need to
be argued, making them claims. Warrants may need to be
argued, which is the reason for the existence of the
backing, but it is not clear how the backing differs from
grounds in a normal argument. We agree, and extend
Toulmin arguments to make the recursive properties of
arguments and the relationships between grounds,
warrants, and claims explicit, while keeping the basic
connections between the components that Toulmin
proposed.

We propose a simple language to represent the
structure of these extended Toulmin arguments. This
language, expressed in the BNF-like LR(1) grammar2
shown in Figure 3, captures the essence of Toulmin
arguments while facilitating recursion and sub-arguments.
Utterances in the language can be seen in Section 4.3.

We chose a textual language because textual utterances
are easier to manipulate than tree diagrams, because trees
are easily generated from the parser’s abstract syntax tree,
and because a ‘compiler’ can assist in dynamic browsing
of arguments. Further discussion of the use of the
language can be found in Section 5.1.

4. Constructing Satisfaction Arguments

Recall the goal of our work: to construct convincing
satisfaction arguments that a system can satisfy its

2 This BNF-like form is the input to a YACC-like [11] parser

generator from Bumblebee Software that generates LR parsers in Java
and C++. (http://www.bumblebeesoftware.com/)

security requirements. The use of the word “can” instead
of the word “will” is important, because we do not know
if the eventual system implementation will respect the
specifications levied upon it, nor do we know if the
system will introduce unintended vulnerabilities.

To construct security satisfaction arguments, one must
have security requirements to be satisfied. There are two
principal steps involved in determining the security
requirements for a system: enumerating the security goals
(which assets are to be protected, and why), then
determining the security requirements (the constraints) to
apply to the system functions to satisfy the goals. These
processes are discussed in [16], and are not further
elaborated in this paper. This paper is about validating the
security requirements, using the collection of domains
(including the machine as it will be) to show that the
system can respect the security requirements.

A running example is used to illustrate construction of
security satisfaction arguments.

4.1. Explanation of the Example

A simple human resources application is used in this
section to illustrate our uses of argumentation. We assume
one security goal: the data is confidential. One security
requirement (constraint) has been derived from this goal:
the data must only be provided to HR staff. Figure 1
shows the initial problem diagram for this application.
There are two phenomena of interest: the user’s request
for personnel information (U!persNumber) and the
information returned by the request (HR!persData).

Grounds Claim

Rebuttal

Modal
Qualifier

Warrants

Backing

Figure 2 – Generic Toulmin-form argument

argument : optional_assignments claim '.'
 | argument optional_assignments claim '.' ;

optional_assignments : LET assignments ';'
 | // empty ;

assignments : assignment
 | assignments ',' assignment ;

assignment : IDENTIFIER '=' atom ;

claim : optional_grounds proposition optional_rebuttals;

optional_rebuttals : REBUTTED BY rebuttals_list
 | // empty ;

rebuttals_list : rebuttal
 | rebuttals_list ',' rebuttal ;

rebuttal : proposition
 | proposition MITIGATED BY proposition
 | proposition MITIGATED BY '(' claim ')' ;

optional_grounds : GIVEN GROUNDS grounds_expr
 optional_warrant THUS CLAIM
 | // empty ;

optional_warrant : WARRANTED BY grounds_expr
 | // empty ;

grounds_expr : grounds_factor
 | grounds_expr AND
 grounds_factor ;

grounds_factor : grounds_term
 | grounds_factor OR
 grounds_term ;

grounds_term : grounds | NOT grounds ;

grounds : proposition | '(' claim ')' ;

proposition : IDENTIFIER ':' atom
 | IDENTIFIER | atom ;

atom : STRING ;

Figure 3 – Language Grammar

4.2. The Outer Argument

Starting with the HR problem shown in Figure 1, we
first attempt to construct the outer argument that proves
the claim: HR data is provided only to HR staff. Recall
that this argument will take the form

 (domain property premises) ├─ security requirement

There are two domains in the problem: the biddable
domain ‘users’ and the machine (which contains the data).
To construct the argument, we must first express the
behavior of the system more formally. To do so, we use a
notation based on the causal logic described in [17]. In
this logic, the behavior of the domains in Figure 1,
expressed in terms of the phenomena, is:

U!persNum shall cause M!persData

A major problem is immediately exposed. Given what
we see in the behavior description, there is no way to
connect the system’s behavior to the security requirement,
as membership of the Users domain is not made apparent.
No formal argument can be constructed. At this point, we
have (at least) three design choices:
1. Introduce some physical restriction, such as a guard,

to ensure that the membership of the domain ‘users’
is restricted to HR staff. Doing so would permit
construction of the following proof:

M is defined as User ∈ HR
D is defined as phenomenon HR!persData
D → M (if info is displayed, then user ∈ HR)
D (info is displayed)
M (therefore user ∈ HR)

2. Introduce phenomena into the system permitting
authentication and authorization of a ‘user’.

3. Introduce a trust assumption (TA) stating that we
assert that the membership of ‘users’ is limited to HR
staff, even though no information is available to
support the assertion.

We choose option 2, and the resulting problem diagram is
shown in Figure 4. We now require the user to supply
some sort of credentials along with the request for
information. These credentials are passed to some external
authentication and authorization engine, which answers
yes or no. If the answer is yes, then the machine responds
to the user with the data; otherwise, the data is refused.
The new behavior specification is:

1. U!(UserId, credentials, Payroll#) shall cause
PIM!Validate(UserId, HR, credentials)

2. if isValid(UserId, credentials)
 PIM!Validate(HR, UserId, credentials)
 shall cause CS!YES
else
 PIM!Validate(HR, UserId, credentials)
 shall cause CS!NO

3. CS!YES shall cause PIM!PersonInf(Payroll#)
4. CS!NO shall cause PIM!NO

The truth or falsity of the isValid predicate is determined
by the contents of the Credentials Store.

We must now construct the satisfaction argument for
the new ‘Users’ domain. We begin with the outer

argument, first defining the symbols to be used. These are
shown in the following table.

Symbol Derived from (see Figure 4)
I : Input request U!(UserId, credentials, Payroll#)
V: Validate Creds PIM!Validate(HR, UserId, credentials)
Y: ReplyYes CS!YES
D: DisplayInfo PIM!PersonInf(Payroll#)
C: CredsAreValid isValid(UserId, credentials)
M: MemberOfHR Conclusion: user is member of HR

The following predicate logic premises are derived
from the behavioral specification. These premises are the
grounds used in the formal argument and, if necessary,
will be supported by informal arguments.

Name Premise Description
P1 I → V Input of request shall cause validation
P2 C → M If credentials are valid then user is a

member of HR
P3 Y → V&C A Yes happens only if credentials are

valid and validated
P4 D → Y Display happens only if the answer

was Yes

As the requirement is that we display information only to
a member of HR, we include D as a premise and M as the
conclusion. Thus we want to show:

(P1, P2, P3, P4, D ├─ M).
A proof is shown in Figure 5.

4.3. The Inner Arguments

Each of the rules used in the outer argument should be
examined critically. We begin with the premises P1, P3, &
P4. These are probably not controversial, because one can
say that they are part of the specification of the system to
be implemented. The arguments thus consist of one trust
assumption, as shown in the following utterance in our
argument language:

let G1 = "system will be correctly implemented";
given grounds G1 thus claim S1.
given grounds G1 thus claim S3.
given grounds G1 thus claim S4.

Provide HR data
requested by user
- Only to HR staff

B
Users

Personal
Information
Machine +
HR Data

a

b
a: U!persNumber(#, userID, credentials)
 PIM!{ persData | NO }

b: PIM!validate(userID, credentials)
 CS!{YES | NO}

Credentials Storage

C
Figure 4 – New HR staff problem diagram

Premise P2 is more complex. This premise is making a
claim about the behavior membership of the domain
‘Users’ by saying that if a person has valid credentials,
then that person must be a member of HR. An argument
for this claim is shown in Figure 6. This argument
incorporates 3 trust assumptions: G2, G3, and G4.

The three rebuttals in the argument require some
treatment. Remember that rebuttals express conditions
under which the argument does not hold. If the rebuttals
remain in the argument, they create implicit trust
assumptions saying that the conditions expressed in the
rebuttals will not occur, which may be acceptable.
Alternatively, one could construct an argument against a
rebuttal. We will do that for R1 in the next section.

4.4. Removing Rebuttals by Adding Function

Just as one might be required to modify the problem in
order to be able to construct the outer argument, at times
the most straightforward way to remove a rebuttal might
be to add functionality to a system. The additional
functionality would permit adding new grounds or
warrants to mitigate the conditions that permit the rebuttal.

As an example, consider R1: a dishonest HR member
sells credentials. One could mitigate this risk by increas-
ing the probability that an unusual use of the employee’s
credentials would be detected, thus raising the probability
that the misuse would be detected and leaving the
employee a very uncomfortable position. To this end, we
add two functional requirements to the system:

• All uses of HR credentials are logged
• Any use of HR credentials from a location outside

the HR department is immediately signaled by
email to the HR director.

These functional requirements would then be used as
grounds in an argument against the rebuttal R1, shown in
Figure 7. C2 would then be added as a mitigating
proposition to the rebuttal in argument 1 (R1: "HR member

is dishonest" mitigated by C2). Note that C2 might also
mitigate R2 (a successful social engineering attack) by
revealing unauthorized uses of credentials.

3 This proof was constructed manually and verified automatically
with DC Proof, by Dan Christensen. http://www.dcproof.com/

5. Discussion and Evaluation

In this section we discuss some issues arising from our
work, in order to evaluate our approach.

5.1. The Logic Used for the Outer Argument

We have used propositional logic in our example for
simplicity. As a side effect, we hid implicit assumptions
that ought to be explicit, e.g. the UserId is the same in I
and V. For our example to be complete, claims (trust
assumptions) should have been added to the inner
argument to cover these assumptions. Using predicate or a
more powerful logic would have removed this difficulty.

Use of a more powerful, i.e. more fine-grained, logic in
the outer argument leads to fewer trust assumptions in the
inner argument. On the other hand, more powerful logics
are harder to work with.

5.2. The Inner Argument Language

The syntactic and semantic structure of the inner
argument language facilitates several kinds of analysis.
Because trust assumptions are defined as unsupported
grounds, one could easily produce a list of them. One
could produce a list of arguments supporting a particular
premise in an outer argument, helping verify plausibility.
One could negate one or more trust assumptions, seeing
which outer arguments no longer hold. One could produce
tree diagrams of the arguments, taking closure into
account. The naming of grounds, claims, and rebuttals
facilitates reuse of arguments.

1 I → V (Premise)
2 C → M (Premise)
3 Y → V & C (Premise)
4 D → Y (Premise)
 5 D (Premise)
 6 Y (Detach (→ elimination), 4, 5)
 7 V & C (Detach, 3, 6)
 8 V (Split (& elimination), 7)
 9 C (Split, 7)
 10 M (Detach, 2, 9)
11 D → M (Conclusion, 5)

Figure 5 – Proof: the security requirement is satisfied3

given grounds
 G2: "Valid credentials are given only to HR members"
warranted by
(
 given grounds
 G3: "Credentials are given in person"
 warranted by
 G4: "Credential administrators are honest & reliable"
 thus claim
 C1: "Credential administration is correct"
)
thus claim
 P2: "HR credentials provided --> HR member"
rebutted by
 R1: "HR member is dishonest",
 R2: "social engineering attack succeeds",
 R3: "person keeps credentials when changing depts" .

Figure 6 – Argument 1: for premise P2

given grounds
 G5: "uses of HR creds are logged"
 and
 G6: "uses of HR creds from outside are emailed"
warranted by
 G7: "these actions increase the probability of
detecting improper use of creds"
 and
 G8: "the employee does not want to get caught"
thus claim
 C2: "HR members will not sell their credentials".

Figure 7 – Argument against rebuttal R1

5.3. Constructing Inner Arguments

One question that arises is “how does the analyst find
rebuttals, grounds, and warrants?” Unfortunately, we
cannot propose a recipe. We suggest a method inspired by
the how/why questions used in goal-oriented requirements
engineering methods (e.g. KAOS [14]). Given a claim, the
analyst asks ‘why is this claim true?’ and ‘what happens if
it is not true?’

The method we propose is for the analyst first to
choose which claim is being argued, and then use the
‘why’ question to gather the grounds that are pertinent to
the claim along with the warrants that connect the grounds
to the claim. The argument is then constructed.

The analyst next asks the question “what can prevent
this claim from being true?” The answers are the initial
rebuttals. Some of these rebuttals will be challenges of the
grounds or warrants; these create the need for sub-
arguments where the challenged item is a claim. In other
cases, the rebuttal will not be addressed, thereby creating
an implicit trust assumption stating that the event(s)
described in the rebuttal are not to be considered. A third
possibility is to add new grounds to the argument that
remove the conditions assumed by the rebuttal.

5.4. Problem vs. Solution Space

A reasonable objection to argumentation as described
in this paper is that we are designing the system in order
to determine its requirements. To some extent, this is true;
the domains included in the system are being more finely
described iteratively.

However, we argue that the part of the system being
constructed is the machine, and we are not designing that.
By applying an iterative process that interleaves
requirements and design [20], we are specifying the
environment (or context) that the machine lives within.
These specifications include additional domains that need
to exist (perhaps inside the machine), and additional
phenomena required to make use of these domains.

5.5. Goal Hierarchies & Argumentation

The difference between the implicit argument found in
a goal hierarchy (e.g. KAOS [14]) and the argumentation
proposed in this paper is primarily one of expressiveness.
A goal hierarchy has a ready-made structure (it is an
‘and/or’ tree) whose validity (or invalidity) is immediately
apparent. The structure of an argument from domain
properties to security requirements is more complex.
Because it depends upon the domains and the behavioral
specification of the phenomena, it needs an explicitly-
crafted outer argument. Finally, the inner arguments make
use of grounds that would not normally appear in a goal
hierarchy, for example the warrants G3, G4, and G8.

5.6. Security Functional Requirements

Adding functionality to support security requirements
creates a traceability problem. This paper provided two
situations where this sort of functionality was added:
addition of credential verification to permit the outer
argument to be constructed, and addition of monitoring
and logging functionality to support removal of the
dishonest employee rebuttal. Somehow these functions
must remain connected with the security requirement they
support, because the need for these functions could change
or disappear if the security requirement changes.

6. Conclusions & Future Work

We have shown how satisfaction arguments facilitate
showing that a system can meet its security requirements.
The structure behind the arguments assists in finding
system-level vulnerabilities. By first requiring the
construction of the formal argument based on domain
properties, one discovers which domain properties are
critical for security. Constructing the informal argument
showing that these domain properties can be trusted helps
point the analyst toward vulnerabilities; the rebuttal is an
important part of this process. Vulnerabilities found in this
way are removed either through modification of the
problem, addition of security functional requirements, or
through addition of trust assumptions that explain why the
vulnerability can be discounted.

One area that we are actively looking at is tool support
for capturing the arguments. The capabilities discussed in
Section 5.1 are prime candidates; the approach we are
considering is ‘compiling’ the abstract syntax tree built by
the parser, decorating the tree with appropriate semantic
information and symbol table references. We are also
looking at a tool constructed around problem context
diagrams by experimenting with adapting the argument
capture tool Compendium [1] for describing and
navigating through IBIS-style arguments [5].

Another area of focus is to combine the ideas from this
paper together with our earlier work on threat descriptions
[9]. The goal is to present a coherent method to elicit
security goals through the enumeration of assets and the
threats that they are subject to, and then to link the
resulting problem context diagrams together to aid
consistency checking.

It seems that there might be a close correspondence
between the ‘defense in depth’ principle and completing
different outer arguments that depend on different domain
properties. We wish to investigate this idea in more detail.

Finally, we continue to investigate industrial case
studies in order to test these ideas more thoroughly.

Acknowledgements:

The authors wish to thank Michael Jackson for his
continuous support, to Simon Buckingham Shum for
many helpful conversations about argumentation, to Clara
Mancini for extending the Compendium tool to support
problem frames, and to the external reviewers for their
helpful comments. The financial support of the
Leverhulme Trust is gratefully acknowledged, as is EU
support of the E-LeGI project, number IST-002205.

References:

[1] "Compendium Institute."
http://www.compendiuminstitute.org/.

[2] K. Attwood, T. Kelly, and J. McDermid, "The Use of
Satisfaction Arguments for Traceability in Requirements Reuse
for System Families: Position Paper," Proceedings of the
International Workshop on Requirements Reuse in System
Family Engineering, Eighth International Conference on
Software Reuse. Carlos III University of Madrid, Madrid Spain,
5 Jul 2004, pp. 18-21.

[3] S.J. Buckingham Shum, "The Roots of Computer
Supported Argument Visualization," Visualizing Argumentation:
Software Tools for Collaborative and Educational Sense-
Making, P. A. Kirschner, et al., Eds. London UK, Springer-
Verlag, 2003, pp. 3-24.

[4] J.E. Burge and D.C. Brown, "An Integrated Approach for
Software Design Checking Using Design Rationale,"
Proceedings of the First International Conference on Design
Computing and Cognition, J. S. Gero, Ed. Cambridge MA USA,
Kluwer Academic Press, 19-21 July 2004, pp. 557-576.

[5] J. Conklin, "Dialog mapping: Reflections on an industrial
strength case study," Visualizing argumentation: software tools
for collaborative and educational sense-making, P. A. Kirschner,
et al., Eds. London UK, Springer-Verlag, 2003, pp. 117 - 136.

[6] A. Finkelstein and H. Fuks, "Multiparty Specification,"
Proceedings of the 5th International Workshop on Software
Specification and Design. Pittsburgh PA USA, 1989, pp. 185-
195.

[7] G. Fischer, A.C. Lemke, R. McCall, and A. Morch,
"Making Argumentation Serve Design," Design Rationale
Concepts, Techniques, and Use, T. Moran and J. Carroll, Eds.,
Lawrence Erlbaum and Associates, 1996, pp. 267-293.

[8] C.B. Haley, R.C. Laney, J.D. Moffett, and B. Nuseibeh,
"The Effect of Trust Assumptions on the Elaboration of Security
Requirements," Proceedings of the 12th International
Requirements Engineering Conference (RE'04). Kyoto Japan,
IEEE Computer Society Press, 6-10 Sep 2004, pp. 102-111.

[9] C.B. Haley, R.C. Laney, and B. Nuseibeh, "Deriving
Security Requirements from Crosscutting Threat Descriptions,"
Proceedings of the Third International Conference on Aspect-
Oriented Software Development (AOSD'04). Lancaster UK,
ACM Press, 22-26 Mar 2004, pp. 112-121.

[10] M. Jackson, Problem Frames, Addison Wesley, 2001.

[11] S.C. Johnson, Yacc - Yet Another Compiler-Compiler,
Computer Science Technical Report 32, Bell Laboratories,
Murray Hill, NJ, July 1975.

[12] T.P. Kelly, Arguing Safety - A Systematic Approach to
Safety Case Management, D.Phil Dissertation, University of
York, York, 1999.

[13] G. Kotonya and I. Sommerville, Requirements
Engineering: Processes and Techniques, United Kingdom: John
Wiley and Sons, 1998.

[14] A. van Lamsweerde, "Goal-oriented Requirements
Engineering: A Guided Tour," Proceedings of the Fifth IEEE
International Symposium on Requirements Engineering (RE'01).
Toronto, Canada, IEEE Computer Society Press, 27-31 Aug
2001, pp. 249-263.

[15] J. Lee and K.Y. Lai, "What's in Design Rationale?,"
Human-Computer Interaction - Special Issue on Design
Rationale, vol. 6 no. 3-4, 1991, pp. 251-280.

[16] J.D. Moffett, C.B. Haley, and B. Nuseibeh, Core Security
Requirements Artefacts, Technical Report 2004/23, Department
of Computing, The Open University, Milton Keynes UK, June
2004.

[17] J.D. Moffett, J.G. Hall, A. Coombes, and J.A. McDermid,
"A Model for a Causal Logic for Requirements Engineering,"
Requirements Engineering, vol. 1 no. 1, March 1996, pp. 27-46.

[18] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis,
"Telos: Representing Knowledge About Information Systems,"
ACM Transactions on Information Systems (TOIS), vol. 8 no. 4,
October 1990, pp. 325 - 362.

[19] S.E. Newman and C.C. Marshall, Pushing Toulmin Too
Far: Learning From an Argument Representation Scheme,
Technical Report SSL-92-45, Xerox PARC, Palo Alto CA USA,
1991.

[20] B. Nuseibeh, "Weaving Together Requirements and
Architectures," Computer (IEEE), vol. 34 no. 3, Mar 2001, pp.
115-117.

[21] C. Potts and G. Bruns, "Recording the Reasons for Design
Decisions," Proceedings of the 10th International Conference on
Software Engineering (ICSE'88). Singapore, IEEE Computer
Society, 1988, pp. 418-427.

[22] B. Ramesh and V. Dhar, "Supporting Systems
Development by Capturing Deliberations During Requirements
Engineering," IEEE Transactions on Software Engineering, vol.
18 no. 6, June 1992, pp. 498-510.

[23] S.E. Toulmin, The Uses of Argument, Cambridge:
Cambridge University Press, 1958.

[24] S.E. Toulmin, R.D. Rieke, and A. Janik, An Introduction
to Reasoning, New York: Macmillan, 1979.

[25] P. Zave and M. Jackson, "Four Dark Corners of
Requirements Engineering," Transactions on Software
Engineering and Methodology (ACM), vol. 6 no. 1, Jan 1997,
pp. 1-30.

