
Open Research Online
The Open University’s repository of research publications
and other research outputs

Semantic web service offer discovery for e-commerce
Conference or Workshop Item

How to cite:

Kopecky, Jacek and Simperl, Elena (2008). Semantic web service offer discovery for e-commerce. In: Proceedings of
the 10th international conference on Electronic commerce - ICEC ’08, p. 1.

For guidance on citations see FAQs.

c© 2008 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/1409540.1409579

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/1409540.1409579
http://oro.open.ac.uk/policies.html

Semantic Web Service Offer Discovery for E-commerce∗

Jacek Kopecký
Semantic Technology Institute (STI)

Innsbruck, Austria
jacek.kopecky@sti2.at

Elena Simperl
Semantic Technology Institute (STI)

Innsbruck, Austria
elena.simperl@sti2.at

ABSTRACT
Semantic Web Services (SWS) are an important part of the
Semantic Web, traditionally focused on discovery and com-
position of e-services. In the area of e-commerce services, it
is necessary to go past the granularity of service discovery
and also to consider discovering the actual offers provided
by a service. Nevertheless, Semantic Web Services research
has only recently started to consider offer discovery. In this
paper, we present a solution for offer discovery that uses
WSMO-Lite, the new lightweight semantic Web service an-
notation framework.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services

General Terms
Algorithms, E-commerce

Keywords
Offer Discovery, Web Services, Semantic Web Services

1. INTRODUCTION
For a decade, the World-Wide Web has been a growing mar-
ket place that makes it easier for companies to reach po-
tential clients with their products and services. Online com-
merce through web sites and search engines has a much lower
cost, compared to the costs of commerce in the traditional
channels, such as brick-and-mortar stores and offices, com-
plemented with heavy advertising. In addition to reaching
many more potential clients, e-commerce companies can also
profit from the long tail or less-popular products.

The Semantic Web is an extension of the current Web with
semantic descriptions of data and services that can be used

∗This work is partially funded by the EU research project
SOA4All.

automatically by the computer on behalf of its user. A ma-
jor technology for publishing services on the Web is the so-
called Web services (or WS-*) family of technologies. Based
on the WWW standards HTTP and XML, Web services
are gaining significant adoption in areas of application inte-
gration, wide-scale distributed computing, and business-to-
business cooperation. Still, many tasks commonly performed
in service-oriented systems remain manual (performed by a
human operator), and services in areas such as e-commerce
mostly remain available only through a human-facing inter-
face (HTML).

In order to make Web services part of the Semantic Web, the
research area of Semantic Web Services (SWS) aims to in-
crease the level of automation around Web services. SWS au-
tomation is supported by machine-processible semantic de-
scriptions which capture the important aspects of the mean-
ing of service operations and messages. SWS descriptions
are processed by a semantic execution environment (SEE,
for instance WSMX [3]). A user can submit a concrete goal
to the SEE, which then accomplishes it by finding and us-
ing the appropriate available Web services. SWS research
focuses mainly on how the SEE “finds the appropriate Web
service(s)”, as illustrated in Figure 1 with the first four SEE
tasks.

In the figure, the user wants to arrange a June vacation in
Rome. There are four services with published descriptions:
the airline Lufthansa, and hotel reservation services for New
York, Rome, and one for the Marriott hotel chain worldwide.
The SEE first discovers services that may have hotels in
Rome, discarding Lufthansa which does not provide hotels,
and the New York service which does not cover Rome. Then
the SEE discovers offers by interaction with the discovered
services. The available offers in this particular example are
only three hotels: a 4* Marriott at the outskirts of Rome,
and one 2* and one 3* hotel in the city center. Then the SEE
filters the offers depending on the user’s constraints and re-
quirements (minimum 3-star rating), ranks them according
to the user’s preferences (central location is more important
than price) and selects one offer, in the end invoking the
corresponding service.

For simplicity of the illustration, in this figure we omit ser-
vice composition, which combines multiple services in order
to achieve more complex functionalities; and semantic me-
diation which resolves any data and process heterogeneities.

published
descriptions

FilteringOffer discoveryService discovery
hotels in Rome min 3−star rating

"Rome vacation"
User goal

Roma hotels (R)
Marriott (M) R: Central 3* $120

M: Outskirts 4* $250

R: Central 2* $70

lis
t s

er
vi

ce
s

Registry

M: Outskirts 4* $250
R: Central 3* $120

Ranking, selection
prefer central location, price

R: Central 3* $120

Invocation
reserve room

SEE

availability, rates

room for 2, jun 2−8

Web Services

what rooms for 2 do you have on jun 2−8?

ho
te

ls
M

ar
rio

tt

N
ew

 Y
or

k
ho

te
ls

ho
te

ls
R

om
a

Lu
fth

an
sa

ai
rli

ne

Figure 1: Semantic Execution Environment (SEE) automation tasks

There are a number of SWS frameworks that support SWS
automation; the major two are WSMO [9] and OWL-S [10].
Both are built from the top down, providing semantic de-
scriptions tailored for the expected automation tasks. How-
ever, neither of these frameworks supports the particular
task of offer discovery, detailed in [6] and necessary espe-
cially for e-commerce. To add offer discovery, these frame-
works have to be extended with further constructs, such as
a “data-fetching interface” introduced in [12].

Recently, we have proposed WSMO-Lite [11] as a lightweight
SWS framework that adds semantic annotations as a layer
on top of established Web service technologies. It is built
from the bottom up and it provides semantic annotations for
WSDL1, based in a clean model of service semantics, instead
of tailoring the semantic constructs towards any particular
tasks. As a consequence, WSMO-Lite annotations are more
reusable and they make it easier to realize various SWS au-
tomation functionalities. In this paper, we show a concrete
realization of offer discovery which uses WSMO-Lite se-
mantic descriptions.

We should note that what we call offer discovery is elsewhere
in literature (e.g. [4]) called service discovery, making the
distinction between a Web service and the service it actually
provides. We prefer the term offer to avoid causing confusion
due to overloading of the common word service. In addition,
the term offer is easily understood to encompass both offered
services and offered products, the basis of e-commerce.

As a final note, there are online services that aggregate data
from many providers and make it possible for users to com-
pare the offers from different sources. Such services can cer-
tainly be created without the use of semantics, by tailoring a
data aggregation connector for every participating provider,
or by standardizing a common offer discovery interface. Even
the standardized interfaces would likely be different in dis-
parate domains, making cross-domain aggregation resort to
specific connectors again. An example of such a service is
expedia.com, which puts together hotel reservations, plane
tickets and car rentals. In Semantic Web Services, and in
particular in our work, we propose the use of semantic tech-
nologies to address this common and well known integration
problem. Our offer discovery mechanism uses light-weight
semantic annotations to be able to access any suitable Web

1Web Service Description Language, http://w3.org/TR/
wsdl20

service, regardless of the domain of its offerings.

This paper is structured as follows: in Section 2, we define
offer discovery. In Section 3, we discuss WSMO-Lite and
the semantic annotations necessary for offer discovery, and
Section 4 provides details of our implemented offer discovery
algorithm. Finally, Section 5 lists some related work, and
Section 6 concludes the paper.

2. WEB SERVICE OFFER DISCOVERY
Within the big picture of SWS automation, offer discovery
follows the task of service discovery, and its results go into
filtering, ranking and selection. Service discovery returns a
set of services that can potentially fulfill the user’s goal.
Offer discovery interacts with these services (or the service
providers) in order to find out any concrete offers that are
relevant to the goal; the result of offer discovery is the set
of available offers. This set is then subject to filtering and
ranking according to the user’s constraints and preferences,
in order to select the best offer. In the end, the selected offer
is consumed, i.e. the client invokes the service that gave this
offer and, after successful invocation, it will get the offered
product or functionality.

In order to be able to talk about offer discovery, we need to
specify what we mean by the term “offer”. From the point of
view of contracting, an offer is a contract proposed by the
service provider to the client, who can evaluate and accept
or reject it. Naturally, an offer can only be valid for a lim-
ited period of time; this consideration, however, is not yet
included in our work.

With Web services, there is generally no specific interface
that would explicitly talk about contracts or offers and their
acceptance or rejection by the client. Instead, a Web ser-
vice may provide a set of information inquiry operations
that may return information about what the service offers,
e.g. finding out hotel room availabilities for given dates. The
client may reject the offer by simply ignoring that data, and
it may accept it by calling execution operations, i.e., the op-
erations that invoke the actual functionality of the service;
e.g. booking a room in a given hotel for the given dates.

Therefore, for Web service offer discovery, we can formalize
an offer O as a tuple that contains two sets of parameters:
execution parameters Px that are required for invoking the
service and consuming this offer, and extra parameters Pe

that help the client to filter and to rank the offers:

O = 〈Px, Pe〉

In our hotel scenario, the execution parameters are the start
and end dates of the stay, the number of guests and any
required data about them; and of course the selected hotel
reservation service and the concrete hotel. All this data is
necessary for making a reservation. The extra parameters
for filtering and ranking would be the locations and star
ratings of the hotels and the room prices. Strictly speaking,
the client does not need to know the price when reserving
a room, and it certainly does not need to send the price to
the service in the process of making a reservation.

Some of the execution parameter values come from the user
goal, in our case the data of the guests and the dates of the
stay. These parameters will be the same for all the avail-
able offers, so they cannot serve any purpose during the
filtering and ranking stages; however, they will be necessary
for invoking the service. In fact, the particular service that
supplies a given offer is itself an execution parameter of the
offer. This ensures that the offer is a self-contained construct
for the further SWS automation steps: the invocation com-
ponent knows what service to invoke; and in filtering and
ranking the client may express constraints or preferences di-
rectly on the services, for instance by building trust with
particular providers that delivered good value in the past.

Any other offer parameter values come from the offer dis-
covery process, interacting with the information inquiry op-
erations of the discovered services.

The split of offer parameters into execution parameters and
extra ones allows us to establish identity for offers — two
offers are equivalent iff their execution parameter sets are
the same:

O1 = 〈P 1
x , P 1

e 〉, O2 = 〈P 2
x , P 2

e 〉 : O1 ≡ O2 ⇔ P 1
x = P 2

x (1)

This equivalence relation comes from the fact that only the
execution parameters are used in the invocation phase, when
an offer is consumed. If we had two offers that would vary
only in the extra parameters, the service could not know
which of the two offers the client intends to consume. Hence,
the offer discovery process must assure that it does not pro-
duce different but equivalent offers.

To finish the formalization, offer discovery is a function (we
call it DiscO below) which maps a set of discovered Web
services {Si} into a set of non-equivalent (Eq. 4) offers {Oj}
from these services (Eq. 5):

DiscO({Si})→
[

s∈{Si}

DiscO(s) (2)

DiscO(s)→ {Os
j} (3)

∀o1, o2 ∈ {Oj} : o1 ≡ o2 ⇔ o1 = o2 (4)

∀o ∈ DiscO(s), o = 〈Px, Pe〉 : s ∈ Px (5)

While we define offer discovery to deal with a single discov-
ered service at a time (cf. Eq. 2 and Eq. 3), it is possible
that a more sophisticated offer discovery approach can ne-
gotiate with multiple services in parallel and pitch them one
against another in order to get better deals. For example, a
retailer can promise to match any competitor’s price, so the
offer discovery process would need to get the competitors’
offers first and then use them to get matching counteroffers
from the retailer. Even though this kind of multi-way nego-
tiation is sometimes possible in the real world, we have not
seen a single example of an e-service with such capabilities,
therefore we leave this as an extension to be revisited in the
future.

3. WSMO-LITE SEMANTIC SERVICE AN-
NOTATIONS FOR OFFER DISCOVERY

Semantic offer discovery should optimally be able to com-
municate with any Web service that provides operations for
finding information about its offers. To achieve this, the offer
discovery engine needs a description of the service interface,
to see what operations it contains that can be used to gather
offer information; and a description of the exchanged data,
to understand the offers and to be able to compare them
against the goal. We use the WSMO-Lite SWS description
framework [11], together with the underlying SAWSDL stan-
dard2, to provide all the necessary semantic descriptions.

Any Web service, described in WSDL, has an interface which
consists of a number of operations. WSMO-Lite annotates
the Web service interfaces and operations with functional
semantics, and the inputs and outputs of the operations are
annotated with information semantics. Functional seman-
tics are expressed either using functionality classifications
(such as the service classifications from the ecl@ss taxon-
omy3), or using logical pre-conditions and effects of the ser-
vice or its individual operations. Information semantics are
expressed in WSMO-Lite using ontologies.

Web service interfaces often intermix operations for offer
inquiry with operations that actually provide the resulting
product or service, for instance a hotel reservation service
would provide the availability inquiry operations along with
the operations for making reservations. For the purposes
of automated offer discovery, we will use operations that
only provide information and do not have any significant
side-effects. In other words, we need what the Web archi-
tecture [1] calls “safe interactions”. Information retrieval is
the canonical example of a safe interaction: the client may
query a service about the availability of hotel rooms, yet by
issuing the query the client makes no commitment to book
the room.

To indicate operation safety, WSDL 2.0 defines an exten-
sion attribute wsdlx:safe4. Figure 3 shows a sample ho-
tel booking interface with a safe availability inquiry opera-
tion (findAvailableHotels), a safe price inquiry operation
(getRoomPrice), and the operations for making or cancelling

2Semantic Annotations for WSDL and XML Schema, http:
//w3.org/TR/sawsdl
3eCl@ss Standardized Material and Service Classification,
http://eclass-online.com/
4http://www.w3.org/TR/wsdl20-adjuncts/#safety

<wsdl:types>
<xs:schema targetNamespace="&hotels;">
<xs:element name="availabilityQuery"

sawsdl:modelReference="&onto;StartDate
&onto;EndDate
&onto;GuestInfo">

... content dropped for brevity ...
</xs:element>
... further elements dropped for brevity ...

</xs:schema>
</wsdl:types>

<wsdl:interface name="HotelReservation">
<wsdl:operation name="findAvailableHotels"

wsdlx:safe="true">
<wsdl:input element="availabilityQuery"/>
<wsdl:output element="availabilityResponse"/>

</wsdl:operation>

<wsdl:operation name="getRoomPrice"
wsdlx:safe="true">

<wsdl:input element="roomPriceQuery"/>
<wsdl:output element="roomPriceResponse"/>

</wsdl:operation>

<wsdl:operation name="reserveRoom">
<wsdl:input element="reservationRequest"/>
<wsdl:output element="reservationConfirmation"/>

</wsdl:operation>

<wsdl:operation name="cancelReservation">
<wsdl:input element="cancellationRequest"/>
<wsdl:output element="cancellationConfirmation"/>

</wsdl:operation>
</wsdl:interface>

Figure 2: An excerpt from a hotel reservation ser-
vice WSDL description with WSMO-Lite annota-
tions, incl. WSDL 2.0 operation safety

a reservation (reserveRoom, cancelReservation), both of
which are by definition not safe. The attribute wsdlx:safe

is equivalent to a SAWSDL modelReference annotation that
has the value set to http://www.w3.org/ns/wsdl-extensions#

SafeInteraction. This annotation is then treated as a WSMO-
Lite functionality category for safe operations. It remains to
be seen whether all safe operations can be treated as offer-
inquiry operations, but due to their safety, there is no harm
in invoking such operations even if they do not actually help
get information about the service offers.

Further, as also shown in the figure, WSMO-Lite annotates
operation inputs and outputs with pointers to ontology en-
tities, such as RDFS classes. These annotations allow the
semantic client to match its goal data against the inputs of
the offer-inquiry operations, and to match the goal and of-
fer data against the inputs of the execution operations, to
distinguish between execution and extra parameters.

In summary, WSMO-Lite provides sufficient, albeit light-
weight, semantic descriptions for us to realize an automated
offer discovery process, described in the following section.
Note that none of the annotations are specific to offer dis-
covery; both the operation safety flag and input/output an-
notations are useful for other purposes.

Inputs: Service S whose offers should be discovered,
user goal G.

Result: The set of offers provided by S.
1 set up initialOffer with exec. parameter values from G, S,
2 incompleteOffers = {initialOffer},
3 completeOffers = {}
4 identify offerInquiryOperations from S
5 while incompleteOffers is not empty
6 offer = first(incompleteOffers)
7 if offer is complete (all exec. parameters are present) then
8 move offer to completeOffers; continue while
9 set up knowledgeBase from offer and G

10 select neededOfferExecutionParams (not satisfied by offer)

11 plan = planOperations(
12 initial state: knowledgeBase,
13 goal state: neededOfferExecutionParams,
14 operations: offerInquiryOperations)
15 if empty(plan) then eliminate offer ; continue while
16 receivedValues = invoke(S, plan[1], knowledgeBase)
17 add receivedValues to offer (possibly multiple offers)

18 end while
19 gatherExtraParameters(completeOffers)
20 return completeOffers

Figure 3: Offer discovery algorithm

4. OFFER DISCOVERY ALGORITHM AND
IMPLEMENTATION

The algorithm shown in Figure 3 shows how we have realized
offer discovery on top of the semantic annotations described
above.

In short, the algorithm starts by creating an initial offer from
the goal data, then it keeps invoking the offer-inquiry oper-
ations for every offer that does not provide all the required
execution parameters (so-called incomplete offers).

To get from the goal data to all the required execution pa-
rameters for each offer, we use AI planning (cf. [8], line 11),
taking the currently known data (from the goal and from the
current offer) as the initial state, the presence of all execution
parameters as the goal state, and the offer-inquiry operations
as the possible transitions. In our hotel scenario, booking a
room requires the dates and guest data (from the user goal)
and a selected hotel, so the algorithm would invoke an opera-
tion such as findAvailableHotels(dates,guests), and the
resulting list of hotels would complete the list of offers. This
shows that the data received from a single operation can im-
ply creating multiple offers from the current one (line 17):
the initial incomplete offer only had the dates and guest
data filled in and not the hotel, and findAvailableHotels

returns multiple hotels for the same dates and guests.

In the end (line 19), the algorithm tries to gather further
extra parameters for all the known offers. This is necessary
because the main algorithm only satisfies the execution pa-
rameters, so it would never invoke an operation such as get-
RoomPrice(hotel,dates), because the resulting price value
is not an execution parameter. We are working on heuris-
tic approaches for selecting the operations to invoke for the
extra parameters.

The execution parameters mentioned on line 1 are the input
parameters of the execution operations. While all non-safe

operations can be treated as the execution operations, it is
necessary to select only those execution operations that are
relevant for the user goal: for instance, the hotel reservation
service has a cancelReservation operation which is not go-
ing to be invoked when booking a room, and whose input
parameter (a reservation code) cannot be satisfied by the
goal or any discovered offers.

We have implemented the algorithm within the WSMX sys-
tem [3] with positive initial results, but a larger evaluation
experiment remains as future work. Since WSMO-Lite does
not contain any mechanism for describing user goals, we use
goal description captured in WSMO, as is done in the whole
of WSMX.

Currently, the planning algorithm used in our implementa-
tion is not semantic (for instance, it cannot take into account
any subclass relationships between the parameters and the
available values); this limits the expressivity available for
the ontologies used to describe the input and output data of
the service operations. We are looking for suitable ways of
extending the planning part with semantic reasoning.

5. RELATED WORK
There are two categories of related work: earlier research ap-
plicable to solving the offer discovery problem, discussed in
Section 5.1, and other proposed solutions for offer discovery,
enumerated in Section 5.2.

5.1 Applicable earlier research
Semantic Web service offer discovery, as defined in the pre-
ceding sections, is related to earlier research in automated
negotiation and contracting, and also to the area of infor-
mation gathering.

The term negotiation has been used for different purposes
in a variety of computer science fields, e.g. e-commerce, grid
computing, distributed artificial intelligence and multi-agent
systems. In e-commerce, Beam and Segev [2] define negotia-
tion as “the process by which two or more parties multilater-
ally bargain resources for mutual intended gain”. There are
several different types of negotiations in e-commerce: auc-
tions (multiple buyers bid for price), double auctions (both
buyers and sellers bid for price, e.g. stock exchanges), one-
to-one bargaining, and even catalogue provision (price fixed
by seller). Offer discovery is similar to catalogue provision
(offer discovery accesses and retrieves the relevant parts of
the offer catalogue), but it could be extended in the direction
of bargaining as well.

Research in information gathering has dealt, among other is-
sues, with using multiple information sources to gather the
requested (or relevant) information (cf. [5]), based on a user
query. In Semantic Web services, a user goal can be seen as
a form of query, and the discovered Web services (or their
individual operations) as information sources. For SWS of-
fer discovery, we could potentially shape the description of
the services and their operations so that information gath-
ering techniques would be applicable. This remains to be
investigated.

We can see that offer discovery is not a problem specific to
SWS. However, earlier efforts on similar automation (e.g. in

multi-agent systems) have generally presumed a controlled
environment with a predefined set of interaction protocols
for various tasks; for instance, a marketplace would dictate
a bargaining and auctioning protocol. Such an approach can
be applied to Web services, however, a bargaining/auctioning
protocol or a common query language would need to be
standardized and adopted by most service providers. Any
SWS offer discovery mechanism, together with the neces-
sary semantic annotations mechanisms, would be different
and novel because SWS offer discovery aims to be generic,
independent of the domain of the service offers. Indeed, the
semantic annotations should make the offer discovery algo-
rithm adapt to any available negotiation or query protocol.

5.2 Alternative proposed SWS offer discovery
approaches

At the time of this writing, we know of two published at-
tempts that involve dynamic offer discovery in Semantic
Web Services: the use of a “contracting interface” by Za-
remba et al. [12, 13] and an “estimation phase” of discovery
by Küster et al. [7].

Zaremba et al. talk about a so-called “contracting interface”
with a described operation choreography. In Zaremba’s con-
tracting phase of Web service discovery, the SEE client fol-
lows the predefined choreography to get information about
the relevant offers from a discovered Web service. The con-
tracting interface can be likened to a prescribed protocol for
offer discovery. While Zaremba’s approach is workable, there
are difficulties with limiting the amount of information that
will be retrieved from the service, as this complicates the
design of the contracting interface’s choreography. In com-
parison, our approach needs no explicit choreography, which
is replaced by AI planning and heuristics; both Zaremba’s
and our approaches require the annotations of operation in-
puts and outputs.

Küster et al. describe a service basically as a template for
the offers, and parts of the offer datastructure are marked
as “estimation phase” parameters, with simple ordering of
predefined interactions by which the client can retrieve the
relevant offer data. This approach seems to require that the
user’s goal and the service description have a very similar
structure, which may require complex mediation in hetero-
geneous environments. Our approach does not require that
the structures of service and goal descriptions are similar in
any way, instead it only deals with the exchanged data; in
data mediation, the requirements of our approach are the
same as those of the two presented alternative approaches.

We closely follow the developments of these approaches to
offer discovery, and we intend to perform a larger evaluation
of our solution in comparison against these alternatives.

6. CONCLUSIONS
Web services are a necessary part of the Semantic Web, and
research on Semantic Web Services aims to automate their
use. Among the tasks that can be automated using seman-
tic technologies is offer discovery, especially important for
e-commerce applications. In this paper, we have presented
a formalization of offer discovery and we have shown an of-
fer discovery algorithm and its implementation using light-

weight WSMO-Lite semantic descriptions.

The main benefit of using semantics is that a semantic offer
discovery mechanism need not really understand the seman-
tics of any specific web service interfaces (apart from the in-
puts and outputs). In contrast, traditional e-commerce data
aggregation applications such as expedia.com need to have
special code for any partner interface with which they inter-
act, which has negative impact on the costs of maintenance
and evolution of the system.

While our prototype gives positive results, there are some
open points in need of solutions, and we need to perform a
proper evaluation experiment for our approach.

7. REFERENCES
[1] Architecture of the World Wide Web.

Recommendation, W3C, December 2004. Available at
http://www.w3.org/TR/webarch/.

[2] C. Beam and A. Segev. Automated negotiations: A
survey of the state of the art. Wirtschaftsinformatik,
39(3):263–268, 1997.

[3] A. Haller, E. Cimpian, A. Mocan, E. Oren, and
C. Bussler. WSMX – A Semantic Service-Oriented
Architecture. International Conference on Web
Services (ICWS 2005), July 2005.

[4] U. Keller, R. Lara, H. Lausen, and D. Fensel. Semantic
Web Service Discovery in the WSMO Framework. In
J. Cardoses, editor, Semantic Web: Theory, Tools and
Applications. Idea Publishing Group, 2006.

[5] C. A. Knoblock. Planning, executing, sensing, and
replanning for information gathering. In Proc. of the
14th Int’l Joint Conference on Artificial Intelligence,
pages 1686–1693, 1995.

[6] J. Kopecký, E. Simperl, and D. Fensel. Semantic Web
Service Offer Discovery. In Proceedings of Service
Matchmaking and Resource Retrieval in the Semantic
Web Workshop, colocated with 6th ISWC, 2007.

[7] U. Küster and B. König-Ries. Supporting dynamics in
service descriptions — the key to automatic service
usage. In Proceedings of the Fifth International
Conference on Service Oriented Computing
(ICSOC07), Vienna, Austria, September 2007.

[8] D. Nau, M. Ghallab, and P. Traverso. Automated
Planning: Theory & Practice. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2004.

[9] D. Roman, U. Keller, H. Lausen, J. de Bruijn,
R. Lara, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, and D. Fensel. Web Service Modeling
Ontology. Applied Ontology, 1(1):77–106, 2005.

[10] The OWL Services Coalition. OWL-S 1.1 Release.
Available at
http://www.daml.org/services/owl-s/1.1/,
November 2004.

[11] T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel.
WSMO-Lite Annotations for Web Services. In
Proceedings of the 5th European Semantic Web
Conference (ESWC), Tenerife, Spain, 2008.

[12] T. Vitvar, M. Zaremba, and M. Moran. Dynamic
service discovery through meta-interactions with
service providers. In E. Franconi, M. Kifer, and
W. May, editors, ESWC, volume 4519 of Lecture Notes

in Computer Science, pages 84–98. Springer, 2007.

[13] M. Zaremba, T. Vitvar, M. Moran, and
T. Hasselwanter. WSMX Discovery for SWS
Challenge. SWS Challenge Workshop, Athens,
Georgia, USA, November 2006.

