
Open Research Online
The Open University’s repository of research publications
and other research outputs

Protein-protein interactions classification from text via
local learning with class priors
Conference or Workshop Item
How to cite:

He, Yulan and Chenghua, Lin (2009). Protein-protein interactions classification from text via local learning
with class priors. In: 14th International Conference on Applications of Natural Language to Information Systems,
23-26 Jun 2009, Saarbrücken, Germany, pp. 182–191.

For guidance on citations see FAQs.

c© 2009 Springer-Verlag

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/978-3-642-12550-815
http://www.springerlink.com/content/978-3-642-12549-2/#section=687541&page=1

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/978-3-642-12550-8_15
http://www.springerlink.com/content/978-3-642-12549-2/#section=687541&page=1
http://oro.open.ac.uk/policies.html


Protein-Protein Interactions Classification from Text via
Local Learning with Class Priors

Yulan He and Chenghua Lin

School of Engineering, Computing and Mathematics
University of Exeter, North Park Road, Exeter EX4 4QF

{y.he,cl322}@exeter.ac.uk

Abstract. Text classification is essential for narrowing down the number of doc-
uments relevant to a particular topic for further pursual, especially when
searching through large biomedical databases. Protein-protein interactions are an
example of such a topic with databases being devoted specifically to them. This
paper proposed a semi-supervised learning algorithm via local learning with class
priors (LL-CP) for biomedical text classification where unlabeled data points are
classified in a vector space based on their proximity to labeled nodes. The algo-
rithm has been evaluated on a corpus of biomedical documents to identify ab-
stracts containing information about protein-protein interactions with promising
results. Experimental results show that LL-CP outperforms the traditional semi-
supervised learning algorithms such as SVM and it also performs better than local
learning without incorporating class priors.

Keywords: Text classification, Protein-protein interactions, Semi-supervised
learning, Local learning.

1 Introduction

Text classification is the process of categorizing documents into different classes using
predefined category labels. It is a difficult task because of the complexity and ambiguity
of natural language, where a word may have different meanings or multiple phrases can
be used to express the same idea. The task of classifying biomedical literature is made
more complex than even standard text classification by the fact that such papers use a
varied and specialized vocabulary. The corpus also tends to be very large because of the
vast number of papers available, with online repositories such as PubMed1 containing
over 16 million citations alone. This makes it an uphill task to get the data that one needs.

One area where biomedical text classification would be useful is in the study of
protein-protein interactions (PPI). Analyzing these interactions is invaluable in learning
more about cellular function, which in turn paves the way for breakthroughs in medicine
and biochemistry. As such, the cataloguing of interactions between proteins is an essen-
tial facet of data mining in biomedical literature, which has led to the creation of online
databases specifically devoted to this task [1,2]. In order to narrow down the search
for human and automated curators alike, text classification could be performed to sep-
arate the documents that describe protein-protein interactions from those that do not. It

1 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed
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has been shown to be possible to identify Medline papers containing such interactions
by examining the word frequencies in their abstracts instead of the entire documents
[3]. This would speed up the rate at which classification is performed, making it more
cost-effective to use before searching for interactions within the documents.

So far, there has not been much work done on text classification of biomedical litera-
ture, or at least that focus on protein interactions. One popular method of classification
in use appears to be support vector machines. It has been used in general classification
of biomedical literature along with clustering [4], and has also been applied specifically
to classifying PPI-related documents [5]. Another approach uses a Bayesian method to
calculate the relevance of documents to PPI [3]. In this method, documents containing
PPI were used as a training set and their frequencies compared with a dictionary of the
most common words in the corpus. From this, a list of discriminating words were ob-
tained that might differentiate other relevant documents as well. Each abstract was then
ranked using Bayesian probabilities that were converted into log likelihood scores.

In the area of identifying significant terms before classification, substring matching
has been proposed [6]. This method involves indexing all substrings of the words in the
corpus and ranking them based on relevance to classification. This results in a greatly
enlarged vocabulary, but is able to identify word parts like acety and peptide that are
meaningful in biology, that traditional stemming algorithms are unable to find.

Traditionally, classification problems have been handled by supervised learning, in
which the entire training set consists of labeled data. However, such data is difficult and
tedious to obtain, making it impractical for real-life situations. This has resulted in a
growing interest in semi-supervised learning, where the training set only has a small
proportion of labeled data in comparison with the large amount of unlabeled data in the
set. The fact that training a classifier using both labeled and easily obtained unlabeled
data makes semi-supervised learning much more flexible.

This paper proposed a semi-supervised learning algorithm based on local learning
with class priors (LL-CP) for biomedical text classification. The LL-CP algorithm rep-
resents labeled and unlabeled examples as vertices in a connected graph. The label
information from the labeled vertices is then propagated to the whole dataset using the
linear neighborhoods with sufficient smoothness. The class prior has been incorporated
to force the class distribution of the unlabeled set to be similar to that of the labeled
set. Experiments have been extensively studied to identify text documents containing
protein-protein interactions with only a limited number of label documents.

The rest of the paper is organized as follows. Section 2 presents the semi-supervised
learning algorithm based on local learning with class priors for protein-protein inter-
actions classification. Experimental setup and results are discussed in Section 3 and
Section 4 respectively. Finally, Section 5 concludes the paper and outlines the possible
future work.

2 Local Learning with Class Priors (LL-CP) for PPI Classification

In the local learning framework, data objects are represented as vertices in a fully con-
nected graph with weighted edges. Each vertex has soft labels (i.e. the value of the label
can be continuous) associated with it, which stand for the distribution over the vari-
ous classes for that vertex. The larger the weight is on an edge, the closer the vertices



184 Y. He and C. Lin

connected by that edge are to each other, and the easier it is for labels to propagate
through that edge. Most graph-based semi-supervised learning methods [7,8,9] adopted
a Gaussian function to calculate the edge weights of the graph and as a result, they are
sensitive to the setting of the variance σ of the Gaussian function. A small variation
of σ could affect the classification accuracy dramatically. More recently, several algo-
rithms [10,11] have been proposed to overcome this problem where the predicted label
at an unlabeled point xi is the weighted average of its neighbors’ solutions.

We propose a semi-supervised learning algorithm based on local learning with class
priors (LL-CP). Assume that a class prior conditional probability is given in the form
of P̃ (y|xi) where y ∈ {−1, 1} is the binary class label and xi is a input instance. This
prior knowledge essentially expresses our belief about the conditional distribution of the
labels given the input features. It could be obtained in various ways. In the simplest case,
it could be obtained from human prior knowledge. If such knowledge is not available,
it could either be the maximum entropy prior ∀x, y : P̃ (y|x) = 0.5 or the class prior
estimated from the labeled data only. In this paper, we are particularly interested in
obtaining the class prior in the later case. This essentially enforce that all unlabeled
data are not put in the same class [12].

Thus, our goal is to find a model which minimizes the prediction error for each
document as much as possible while at the same time its probabilistic predictions over
the unlabeled data resembles the given class prior. Let D = {d1, d2, ..., d|D|} be a set
of |D| cosine-normalized document vectors with N dimensions each, with the first l
documents being labeled and the remaining u documents left unlabeled. We have two
classes here, either positive or negative. The document space is represented as a fully-
connected graph where each node represents a document, and the edge between any
two nodes represent a relationship between them.

Assume each document can be optimally reconstructed using a linear combination of
its neighbors. Thus, for each document di, the objective is to minimize the least square
error

εi =
1
ni

∑

dj∈Ni

‖wT
j dj − fj‖2 + λi‖wi‖2 (1)

s.t.
∑

j

wij = 1, wij � 0 (2)

where Ni represents the neighborhood of di, ni = |Ni| is the cardinality of Ni, fj in-
dicates whether dj belongs to a positive or negative class, and wij is the contribution of
dj to di with larger wij indicating closeness of the documents, and λi is a regularization
parameter.

It has been shown in [13] that the optimal solution is

w∗
i = Di(DT

i Di + λiniIi)−1fi (3)

where Di = [d1
i , d

2
i , ..., d

ni

i ] in which dk
i denotes the k-th nearest neighbor of di, fi ∈

Rni is the vector [fj]T for dj ∈ Ni, and I is an ni × ni identity matrix.
An iterative procedure is then performed to propagate labels of the labeled data to

the remaining unlabeled data using the graph constructed in the above step. In each
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iteration, the label information of a document object is updated by the label information
from its neighborhood. At time t + 1, the label of di becomes

f t+1
i = α

∑

j:dj∈Ni

wijf
t
j + (1 − α)yi (4)

where 0 < α < 1 determines the amount of the label information that di receives from
its neighbors. yi is the label of di at the initial state. That is, if di is initially labeled,
then yi is its original label; if di is initially unlabeled, then yi = 0. f t

i is the predicted
label at iteration t.

The label of each document object is updated iteratively until the predicted labels of
the data do not change in several successive iterations.

There are several ways to incorporate the class prior knowledge into the local learn-
ing process. First, the class prior information can be added as an additional constraint
into the objective function. Let Pl be the multinomial distribution of class proportion in
the labeled set, and P̃W be the class proportion produced by the current model param-
eterized by W, Pl and P̃W are defined as:

Pl =
1
l

l∑

j=1

fj (5)

P̃W =
1
u

l+u∑

i=l+1

fi (6)

where l and u are the number of documents in the labeled set and unlabeled set respec-
tively. An additional constraint Pl = P̃W could be added.

It is also possible to add the class prior itself as a regularizer to the objective function
by minimizing the KL-divergence of Pl and PW [14]. We leave this as future work for
further exploration.

We follow a simple procedure called class mass normalization (CMN) proposed
in [15] to adjust the class distributions to match the priors. Let P+ and P− denote
the class prior probability estimated from the labeled set for the positive and negative
class respectively. The estimated class label fi for an unlabeled document di is read-
justed by incorporating the class prior probabilities and is classified as positive class iff

P+ fi∑l+u
i=l+1 fi

> P− 1 − fi∑l+u
i=l+1(1 − fi)

(7)

3 Experimental Setup

For all experiments, the LL-CP algorithm was evaluated using data provided by the
second BioCreAtIvE (Critical Assessment for Information Extraction in Biology) chal-
lenge2. The BioCreAtIvE challenge evaluation was set up in order to apply approaches
in information retrieval and text mining to biomedical literature, and to evaluate them

2 http://biocreative.sourceforge.net/
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against a standard set of data for comparison. One of the tracks in the second BioCre-
AtIvE challenge in 2006 was the extraction of PPIs from text, which includes the
retrieval of documents containing information about protein interactions (Protein In-
teraction Article Sub-task 1).

The documents in the training set provided for the Protein Interaction Article Sub-
Task 1 was used as the corpus. This set consists of biomedical publications from the
PubMed database, and the documents are split into two categories: those that contain in-
formation about protein interactions and those that do not. In total, there were 3536 true
positive examples and 1959 true negative examples available. There were also 18930
positive but noisy examples which were not used in the experiments.

Training sets of labeled examples were obtained from the corpus using different
sizes, with each containing 10, 25, 50, 75 or 100 documents. In addition, different pro-
portions of positive/negative examples were also used, with 25%, 50% or 75% of the
documents in the training sets being positive. Altogether, there were 15 different kinds
of training sets used. There were also 5 test sets of unlabeled documents created, each
unique set consisting of 250 relevant and 250 irrelevant documents.

3.1 Preprocessing

The documents to be classified were first read in by an XML parser. Only the
CURATION RELEVANCE (indicates whether the specified document is in the relevant
set), TITLE and ABSTRACT child elements were saved into memory, while the other
elements were ignored. During the parsing of the XML documents, stemming was per-
formed using Porter’s algorithm [16]. Stop-words were also removed by comparing words
to a list of common words. Punctuation, numbers and other non-alphabet characters were
ignored. After parsing, the tf-idf of the document vectors was computed, which in turn
was passed into a matrix for performing singular value decomposition (SVD) along with
the integer k, which is the reduced number of dimensions required. In order to perform
the SVD needed for latent semantic indexing (LSI), JAMA (a Java matrix package)3 was
used. After decomposition, the resultant right-singular matrix V ′ was then saved as the
set of column vectors of reduced dimensionality, and cosine-normalized.

3.2 Evaluation Metrics

In the area of information retrieval, the set of relevant documents matched (or retrieved)
by the classifier is normally not exactly the same as the set of relevant documents in the
corpus. Correct matches of relevant and irrelevant documents are known as true posi-
tives and true negatives respectively, while incorrectly classified documents are known
as false negatives or positives. The most commonly used measures to evaluate the ef-
fectiveness of an algorithm are precision and recall [17]. Precision is the proportion
of documents retrieved by the classifier that are relevant, while recall is the propor-
tion of relevant documents in the entire corpus that were retrieved. The F-measure (or
F-score) is a combination of both precision and recall, F-measure= (2×Precision×
Recall)/(Precision+Recall). The ranges of all 3 values fall in the range [0, 1], with a
higher value indicating a better classification result.

3 http://math.nist.gov/javanumerics/jama/
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4 Results

This section presents the experimental results on the Protein Interaction Article Sub-
task 1 of the second BioCreAtIvE challenge.

4.1 Number of Vector Dimensions

Experiments were conducted to find out if LL-CP performs better with fewer vector
dimensions, or whether there is an optimal number of dimensions across all data sets.

The LSI of each pair of training and test sets was first computed, then the LL-CP
algorithm was run on the resultant document matrix Vk, with k starting from the original
length of the document vectors in V and decreasing in intervals of 10 until k was equal
to either 10 or 5. For each pair of sets, the number of dimensions that resulted in the
highest F-measure was recorded.

As can be seen from Figure 1, the majority of optimal results occurred when the
number of vector dimensions was below 20, with the most frequently occurring number
of dimensions being 10. This indicates that the top few dimensions returned from LSI
are most important in correctly classifying the documents. In addition, all F-measures of
more than 0.7 occurred only when the number of dimensions used was less than 400. As
a comparison, the average F-measure of all trials run using vector dimensions of 5 or 10
was 0.693, while none of the trials with all dimensions included had a score above 0.6.

The average performance of the training sets was evaluated with the results displayed
in Figure 2. The size of the training set varies between 10 documents to 100 documents
and the axes in dash lines show the F-measure values 0.66, 0.7, and 0.74. It was found
that the best overall size for a training set was at least 50, with better results for larger
training sets. From this experiment, the most consistent and best overall spilt of positive
and negative examples was 50%-50%, while the training sets with only 25% positive
examples fared the worst. This implies that LL-CP either gives better performance with
equal numbers of labeled examples from all classes, or with labeled data that mimics the
proportions of class labels in the test set. Also, the size of the training set did not appear
to make much difference in the classification quality, except where the proportion of
positive labeled examples was 75%.

Fig. 1. A breakdown of optimal vector dimensions
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Fig. 2. Relationship between F-measure, size of training set and number of positive examples

The scores of an arbitrarily selected trial against the number of vector dimensions are
charted in Figure 3, and are typical of most trials in this experiment. As can be seen from
the graph, the scores usually stayed around 0.5 for the most part, indicating that some
of the dimensions used were probably too noisy to aid in classification. The precision
scores tended towards more gradual changes than the recall scores, which tended to be
either 0 or at least 0.5, while rarely being in between the 2 values. Precision was hardly
ever higher than recall.
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Fig. 3. The effect of vector dimensions on precision, recall and F-measure

4.2 Classification Accuracy of LL-CP

All data sets were tested with 10 vector dimensions. The results were averaged out over
each combination of training set size and proportion of positive/negative examples. The
results are shown in Figure 4.

As expected, the data sets with 25% positive examples fared the worst, The 50%
positive sets gave the best results, probably because they reflected the actual class distri-
bution of the unlabeled documents. The 75% positive sets were more consistent across
all the data set sizes than the sets of other proportions. This may be because of the ad-
ditional positive labeled examples which help to create a strong initial cluster of known
positive points, enabling other points to be labeled strongly as positive. Negative ex-
amples are less likely to cluster together because irrelevant documents are not likely to
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Fig. 4. The F-measures of each group of data with 25%, 50% and 75% positive examples versus
different sizes of labeled documents

be similar to other irrelevant documents, whereas most relevant documents will have
some features in common. In addition, the focus of this classifier is on labeling relevant
documents correctly, and the F-measure reflects this.

This implies that if the class distribution of the unlabeled documents are known,
then the documents in the labeled set should be chosen to reflect this. However, if it is
unknown, then the labeled set should contain more positive than negative examples in
order to strongly label the relevant documents.

4.3 Comparison with SVM and Local Learning without Class Priors

This set of experiments compares the performance of three different models, our pro-
posed LL-CP, local learning without incorporating class priors (LL), and the Support
Vector Machines (SVMs). Based on previous experiments carried out in this area [5], a
radial-basis kernel function was used for SVM with σ set to 0.01 and C set to 2. Since
these parameters were obtained from the optimization from PubMed abstracts like those
in the BioCreAtIvE corpus, it was assumed that these parameters could be reused for
the purposes of our experiments here. The SVM was run only on the 50% positive train-
ing sets so that differences in the class distribution between the labeled and unlabeled
data would not affect its accuracy.

It can be observed from Figure 5 that the classification performance using SVM was
mediocre, with the F-measure never rising above 0.7. Both LL and LL-CP outperforms
SVM. The performance difference between LL and LL-CP is negligible when there
are only 25 or less labeled documents in the training set, suggesting that incorporating
class priors does not help with a limited number of labeled documents. However, LL-CP
outperforms LL when the number of labeled documents increases.

The results for the SVM also contrast sharply with the purported accuracy of the
SVM used in text classification [18,19,20], which had a recall of 90%, precision of
92% and an overall F-measure of 92%. However, it should be noted that the SVM in
that case was trained in several rounds, using articles classified by an expert and by
an already trained SVM. Their method of classification also included user feedback
and training. The fact that LL-CP could outperform SVM in the absence of such close
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Fig. 5. Average performance of LL-CP and SVM performance over all data set sizes

supervision suggests that it is robust enough to hold its own against more established
algorithms such as SVM.

5 Conclusions and Future Work

This paper has investigated a semi-supervised learning algorithm based on local learn-
ing with class priors for protein-protein interactions classification from text. Experi-
ments have been carried out on the algorithm to determine the effect of incorporating
the class prior knowledge. It was discovered that LL-CP performed better than the local
learning method without incorporating class priors.

The algorithm has been applied successfully to the problem of document classifica-
tion of biomedical literature with promising results, and a brief comparison of LL-CP
with SVM has shown that LL-CP performs better in this area. However, biomedical
literature is quite different from general text because of its specialized, complex vo-
cabulary, so the findings from this study may not apply to document classification in
general. Thus, it is suggested that the use of LL-CP in document classification should
be further investigated, and perhaps put to practical use if proven to be superior to other
available algorithms.

One disadvantage of using LSI is that it requires a lot of computation time and mem-
ory due to the calculation of matrix inverses. In addition, information about individual
terms is lost in the calculation of the reduced document matrix, so it is impossible to
determine which words were most significant in the classification process. An alterna-
tive is to use some other form of feature reduction. For example, substring matching
[6] could be explored further in place of performing stemming and LSI, and is ideal for
biomedical literature because it would be able to identify and group together biomedical
affixes that a normal stemming algorithm would miss.
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