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MATHEMATICAL THINKING OF UNDERGRADUATE 

STUDENTS WHEN USING THREE TYPES OF SOFTWARE 

Anesa Hosein, James Aczel, Doug Clow and John T.E. Richardson  

The Open University 

 

The research investigates how conceptual understanding of mathematics is promoted 

when using three types of software: black-box (no mathematical intermediate steps 

shown), glass-box (intermediate steps shown) and open-box (interaction at each 

intermediate step). Thirty-eight students were asked to think-aloud and give detailed 

explanations whilst answering three types of tasks: mechanical (mostly procedural), 

interpretive (mostly conceptual) and constructive (mixture of conceptual and 

procedural). The software types had no impact on how students answered the 

mechanical tasks; however students using the black-box did better on the 

constructive tasks because of their increased explorations. Students with low maths 

confidence resorted to using real-life explanations when answering tasks that were 

application related. 

BACKGROUND AND THEORY 

Mathematical software types such as in computer algebra systems/ graphical 

calculators are used as ubiquitous tools in the teaching of mathematics at the 

university level. Although, there are pedagogical advantages of using the software 

(see Heid & Edwards, 2001), Dana-Picard & Steiner (2004) explains that there are 

some drawbacks namely that students use trial-and-error strategies when solving 

problems and that the students are unable to see the mathematical intermediate steps 

because the software is a black-box (BB). Buchberger (1990) recommended that the 

black-box software should be replaced with glass-box (GB) software in which the 

steps are included as this should promote students understanding. 

There are limited studies into determining whether students learning are better 

promoted by either the glass-box or black-box software. These studies tend to 

investigate procedural or mechanical knowledge, or student learning being mediated 

by a teacher (e.g. Horton, Storm, & Leonard, 2004). The current research looks at 

how three software types, black-box, glass-box and open-box (OB) help promote 

learning without the mediation of a teacher. The open-box software requires a 

decision/ interaction by the student for each step before the problem can be solved 

(see Figure 1). 

The study hopes to delve further into which of the boxes can better promote 

conceptual knowledge. Horton et al. (2004) have previously found that the open-box 

helps in students’ procedural knowledge when working problems by hand. 

According Hiebert & Lefevre (1986) conceptual knowledge is considered to be 

knowledge that is “rich in relationships”. Therefore, conceptual knowledge “cannot 
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be an isolated piece of knowledge” but rather only begins to be “part of conceptual 

knowledge only if the holder recognises its relationship to other pieces of 

information”. Further, the formation of conceptual knowledge occurs “between two 

pieces of information that already have been sorted in memory or between an 

existing piece of knowledge and one that is newly learned”.  

Black-Box Glass-Box Open-Box 

   

Figure 1: Comparison of an algebra solution by black-box, glass-box and open-box  

On the other hand, procedural knowledge is discrete knowledge and there are two 

parts of procedural knowledge. The first part is “composed of the formal language, or 

symbol representation system, of mathematics”. The second part of procedural 

knowledge is concerned with the algorithms or rules in particular the step-by-step 

instructions for completing the problem. One thing to infer from these definitions is 

that not necessarily all information acquired can be sorted into procedural and 

conceptual knowledge, instead this information is acquired through learning which 

may or may not consist of procedural or conceptual knowledge. 

Hiebert & Lefevre (1986) also describes meaningful learning which is rich with 

relationships and thus, all conceptual knowledge “must be learned meaningfully”. In 

rote learning relationships are absent but are “tied closely to the context in which it is 

learned” and as such knowledge acquired can only be “accessed and applied only in 

those contexts that look very much like the original”.  

To elicit how students connect their pieces of knowledge, the explanations that 

students make to themselves, that is, self-explanations can provide some insight. In 

terms of looking at the learning of mathematics and understanding how self-

explanations can aid, Renkl (1997) has done an extensive study using 36 students. 

Renkl  asked his students whilst studying problems to use the think-aloud strategy 

(Ericsson & Simon, 1984). The data was analysed to determine whether there were a) 

principle-based explanations: that is the mathematical principles of probability b) 

goal-operator combinations, c) anticipative reasoning, d) elaboration of the situation 

e) noticing coherence, f) monitoring negative and g) monitoring positive. He found 

for near-transfer problems (problems that required mostly procedural knowledge), 

that students’ principle-based explanations and pre-test scores were significant 
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predictors which implied that the students were not connecting with any knowledge 

beyond mathematical principles of which they previously knew. He further 

confirmed Chi, Bassok, Lewis, Reimann, & Glaser (1989)'s notion that the self-

explanations were of major importance in determining whether there is transferable 

knowledge since in the medium transfer problem, only the self-explanations could 

explain the variance and not the pre-test values.  

Further in other studies (e.g. Schworm & Renkl, 2006), self-explanations were not 

only applied to think-aloud strategies but also using the written explanations. 

METHODOLOGY 

For this study, the mathematical domain chosen was linear programming as this was 

a suitable topic that a wide cross-section of undergraduate students could attempt. 

Each software box was programmed within MS Excel using Visual Basic 

Applications (VBA) to perform the simplex algorithm. Students were required to 

work through three problems which each had three tasks that were based on the 

taxonomy by Galbraith & Haines (2000). These tasks were mechanical (requiring 

mostly procedural knowledge), interpretive (requiring mostly conceptual knowledge) 

or constructive (requiring a mixture of conceptual and procedural knowledge). Only 

the mechanical tasks absolutely required using the software although the constructive 

tasks could have been solved either by hand or software. These problems formed the 

post-test. 

Each software box was stored as a separate MS Excel file which had four worksheets; 

one for a practice question and the remaining three worksheets related to each 

problem. An answer form was provided on each worksheet in which students were 

required to type in their answers. 

Undergraduate students from the UK and Trinidad and Tobago were observed via 

web-conferencing remote observation (use of webcams, application sharing and 

voice/video conversation). A Latin-square experiment design was utilised where 12 

students used for each software box type (36 students in all) whilst learning linear 

programming. Data for two additional students (one each for the glass and black box) 

were also collected when audio data was lost due to poor internet connection. Audio 

and screen-capture video data were recorded for all sessions.  

The order in which the three problems were given to students was rotated to 

minimize any carry-over effects. Students were observed for one 2-hour session that 

followed the experimental procedure of Große & Renkl (2006) in which students 

were given a background questionnaire, a pretest, instructional materials related to 

linear programming, a practice question and a post-test. Additionally, the students 

had to complete an ‘approaches to study’ inventory. The background questionnaire 

required students to state their gender, degree, mathematics level and self-assess their 

confidence level for mathematics, and when using MS Excel and computers. The pre-

test questionnaire was used to determine whether the mathematical-level skills varied 
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between participants and 7 questions were answered based on algebra, inequalities 

and simultaneous equations as these were adjudged to be the closest to the linear 

programming.  

During the post-test for approximately one hour the students were asked to think-

aloud (Ericsson & Simon, 1984) as they worked through the three problems. Students 

were prompted to think-aloud by using phrases such as “Keep talking”, “What are 

you thinking?” and “What are you doing now?”. Whilst the first phrase pre-

dominated the session and is recommended, it was necessary to use the latter two 

phrases when students were not forthcoming or were engrossed in working with the 

software or watching the screen. Students were not prompted to talk whilst inputting 

data or typing in their answers. For the constructive and interpretive tasks, students 

were asked to give detailed explanations. This was also used to ascertain the self-

explanations they were making.  

The data was coded into whether students were using mathematical principles (using 

any type of maths) or relating to real-life (using their own practical experience) to 

solve the problems. Further, the data was also coded according to Roy & Chi (2005) 

into deep (meaningful) and surface self-explanations. Deep explanations were 

considered where students made attempts to meaningful learning such as linking their 

previous knowledge. Surface explanations were considered where students were 

paraphrasing or repeating things that were already explicitly found. This paper 

presents the qualitative aspects of the research. In particular, the paper is concerned 

about how students used the software and answered the problems rather than using 

pen/paper as in previous research. Also, the paper looks at students’ written 

explanations based on the problems and the software types they used.  

RESULTS AND DISCUSSION 

Problems 1 and 2 were both application problems, that is they had some reflection on 

real-life. Problem 1 dealt with the manufacturing of toys, whilst problem 2 dealt with 

the manufacturing of furniture. Problem 3 was an abstract problem. Students were 

divided into groups (based on what appeared to be a bimodal distribution) determined 

by their assessment of having a high mathematics confidence (7-10 on a scale) or a 

low mathematics confidence (1-6). Students who had high maths confidence did 

better than students with low maths confidence in Problem 1 (2.3 vs 1.7) and Problem 

3 (2.6 vs 1.9), but did equally well in Problem 2 (3.1 vs 3.1). Generally, students did 

significantly better in Problem 2 than in Problem 1 and 3.   

Mechanical Tasks 

All 38 students answered the mechanical part of the problems correctly, as this was 

procedural and required the clicking buttons. For the open-box, this was slightly more 

complicated as students had to decide on which pivot variable they had to choose (see 

Figure 2). Although, in most cases their initial conjectures, that is, choosing the 

variable that would yield the highest profit was true (timestamp: 52:06), they often 
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got muddled when presented with the second iteration and were uncertain on how to 

proceed (lines 52:57 to 54:49). Further, these students using the open-box software 

where they had to interact with it were often concerned about whether they were 

doing the problem right and if they were getting the right answer (lines 55:27 to 

56:51). The students using the black-box and glass-box software did not have these 

qualms. However, only a couple of students using the glass-box were interested in 

understanding the steps but their conjectures and explanations of the iterations did not 

correspond to the theory similarly to what was found for students using the open-box.  

- 49:51: “Ok, let’s see what this one is talking about” read the instructional 

materials, “First of all, let’s solve it, ok, so we can do that” 

- 50:18: Looks at the papers and the screen [….] 

- 51:20: “Let’s see if I can pick which one to solve.” [ ….] 

- 52:06: “Ok, I’m going with x having the biggest influence, so, I’m going to 

choose that as my pivot variable” chooses x and gets his first iteration 

- 52:57: Hovers over the column x in the new iteration, hover over y and then t. 

- 53:12: “The next one I’m going to do is t … which I think is … appears less 

often, which you want more of” Hovers over y 

- 54:00: “Or I could just try them randomly until I get one” 

- 54:05: “Try y” Chooses y. And gets that he cannot uses that variable 

- 54:17: “Yeah, if I try to do x, y” 

- 54:23: Chooses t, and gets a new iteration. 

- 54:49: Hovers over the s1 column and then s2 

- 55:00: “Let’s see if we got to do another one” Clicks iteration and gets the 

problem has been solved 

- 55:27: “I’m just curious to see what would happen if I had chosen different ways 

around. So, I’m just going to see if there is a difference, to get rid of these two 

variables here” Hovers over the y column in the canonical form and t column in 

the first iteration 

- 55:47: He clears all and chooses t as his first pivot variable 

- 56:07: He chooses x as his second pivot variable 

- 56:33: Find the best solution. 

- 56:49: “I can’t really remember what I got the first time around” 

- 56:51: “I remember y was zero and therefore the same again … maybe it doesn’t  

matter too much then but I already did it” 

Figure 2: Think-aloud transcript of Participant 33 (M, Low Confidence) solving a 

mechanical task for Problem 2 using the open-box 

Interpretive Tasks 

Only two students used the software when answering any of the interpretive tasks. 

This was expected as these tasks required students to link their conceptual 

knowledge. The first student (Participant 32, F, OB, Low Confidence) was changing 

the number values without any idea how changing these values would elicit an 

answer. However, the second student (Participant 13, M, GB, High Confidence) used 

the software to test a conjecture/ explanation he was making to see if it was true. The 
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interpretive task was related to Problem 2, where chairs, one of the manufactured 

furniture, were not produced. Students were asked to make conjectures why this 

occurred. Most students thought it was because the demand for chairs was low, as a 

limit was placed on the number of chairs that could be produced (the demand). 

Participant 13 although initially thought the same, tested the model where there was 

unlimited demand for chairs and found that this was not true and then made the 

correct conjecture. The following is his answer: 

“Chairs were not produced. This may be due to the fact that stools required fewer resources 

and the increased profit on chairs was not enough to outweigh the increased cost in 

resources. Removing the constraint on the demand did not affect the result.” 

Constructive Tasks 

For the constructive tasks, students using the black box were more likely to do 

exploration by testing out numbers. Whilst students explored when using the glass-

box and open-box, it occurred more frequently with the black-box. For example, 

when exploring the constructive task in Problem 3, four students used the black-box 

to explore values for this task. Participant 9 tried 200 and 1000, Participant 7 used 

three numbers (100, 200, 300) and Participant 1 tested numbers 200, 1000, -100, -

200, -1000 after first exploring what occurs through the removal of a constraint (see 

Figure 3). The remaining student, Participant 3, only tried one number (125) as he 

was confirming a calculation he had made. 

- 48:34: She changes the u coefficient in the last constraint row to 0 and the RHS 

from 90 to 0 and performs the iteration. 

- 49:23: After being prompted to talk: “Yeah I just had tried putting back the 

equations without the constraint without the u and gave the answer as … the best 

value for it to be 200 but I’m not sure if that is the maximum value, I’m still 

thinking about it”. Proceeds to look at the papers she has and correspond with the 

screen. 

- 51:24: Clicks ok to get rid of the answer sheet and changes the u coefficient in the 

last row to 1 and the RHS to 200 and do the iteration. 

- 52:21: She changes the RHS of the last row to 1000 and do the iteration 

- 52:31: She clicks input problem highlights the coefficient of u in the last row but 

then looks back at her papers 

- 53:34: After being prompted to talk: “I’m trying something with …um … the 

input problem to see what different values the last constraint will give me.” 

- 53:49: Changes the RHS of the last row as -100 and the coefficient of the u as -1 

[…] 

- 54:27: She re-changes the RHS of the last row to -200 and clicks iteration. 

- 54:59: She changes the RHS of the last row to -1000 and clicks iteration […] 

- 57:35: After being prompted: “Well I’m looking at the constraints to see if 200 is 

the highest value it can get and looking at Constraints A and B.” 

Figure 3: Think-aloud transcript for Participant 1 (F, BB, High Confidence) whilst 

doing a constructive task for Problem 3  
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For the open-box, only two students explored and they tested one number each 

(Participant 38: ‘100’ and Participant 32: ‘91’). For the two students using the glass-

box, Participant 22 tested two numbers (95 and 100) and Participant 15 tried four 

numbers (100, 105, 120, 170). All four students using the glass-box and open-box 

made the wrong conjecture in the end. Participant 15 who tested the most numbers 

eventually gave his answer as being “I don’t know”.  Students needed to test numbers 

above 200 to make the correct conjecture. 

What is interesting here is that only students in the black-box were compelled to test 

a large range of numbers and hence find the correct answer. The students using the 

other software seemed to limit their exploration and this may be a factor of the high 

cognitive load required to process the intermediate information that is being 

presented to them. 

Explanations 

Students who explained their answers based mostly on real-life explanations often 

resulted in the wrong answer. For example in the constructive task in Problem 1, 

students were asked “If the profit increased for toy trains by £1, how this will change 

what the toy company manufacture?”. Although, the demand on toy trains had 

already been filled, students still suggested that the toy company would manufacture 

more toy trains and reduce the production of toy soldiers (the other product). Not 

surprisingly, students who either explored with the software or used mathematical 

principles were significantly more likely to get the answer correct (see Figure 4). 

Participant 4 (F, BB, High Confidence): Want to produce more trains if the profit is 

increased.  (Real-Life Explanation) 

Participant 9 (F, BB, High Confidence): profit would increase to 140 but the numbers of 

toys made stays the same because constraints is that x =40 maximum so even though they 

get more profit they cant make any more trains. (Mathematical Explanation resulting from 

an exploration) 

Participant 13 (M, GB, High Confidence): If the profit per train is increased, it would likely 

be more profitable to produce more trains and fewer soldiers. However Constraint C puts 

an upper bound on the number of trains that can be produced -- a bound which has already 

been achieved. Hence it is not possible to produce more trains and the number of toy trains 

and toy soldiers produced would remain the same. This was confirmed by solving the 

modified problem. (A Mathematical Explanation confirmed with the testing of the software) 

Figure 4: Types of explanations provided by students for a constructive problem 

In some cases, students who explored using the software, although initially may have 

had a real-life explanation, they soon sought to find a mathematical explanation when 

their real-life conjecture was not confirmed. Further, some students when reading and 

trying to understand Problem 3 (abstract problem) wanted to relate the abstract 

problem to something real-life in order to explain it. For example:  
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“Which variable will I not want to have the highest value for … cause I don’t know the 

variable, so I am thinking that the variable could be anything and it will be related to 

specific problems and depending on what application you want to use it in so I guessing 

that these variables they could differ according to the problem” (Participant 15, M, GB, 

Low Confidence). 

Further, it was noted for the application problems (Problems 1 and 2), students with 

the low maths’ confidence were more likely to make real-life applications than 

students with the high maths’ confidence.  Further, students with higher maths’ 

confidence tended to rely slightly more on mathematical explanations. Frequently, 

the mathematical explanations were linked to a more deep approach to learning 

whilst the real-life approach tended to be linked to surface learning approach.  

CONCLUDING REMARKS 

Students who were not certain of answers resorted to real-life explanations which 

often were surface explanations, that is, it was conceptually linked to their 

experiences.  Mathematical explanations were more likely to be made by more 

mathematically confident students because they were more likely to use explorations 

and make conceptual linkages.  

Further, if a problem had a real-life application, some students would try and 

understand the problem from the real-life perspective whilst ignoring the underlying 

mathematics. However, if software is used for exploration, the students can think and 

determine how the mathematical explanations may fit in or use it to confirm or reject 

their conjectures. The black-box software seemed the best choice for this in regards 

to promoting conceptual knowledge. Whilst the open and glass-box, to a lesser 

extent, helped the student to make these connections, these software types are 

probably best in promoting the procedural knowledge and understanding of how 

things can be calculated. 
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