iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

How much semantic data on small devices?

Conference or Workshop Item

How to cite:

d'Aquin, Mathieu; Nikolov, Andriy and Motta, Enrico (2010). How much semantic data on small devices? In:
EKAW 2010, Conference - Knowledge Engineering and Knowledge Management by the Masses, 11-15 Oct 2010,
Lisbon, Portugal.

For guidance on citations see FAQs.

(© 2010 EKAW
Version: Accepted Manuscript

Link(s) to article on publisher's website:
http://ekaw2010.inesc-id.pt/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://ekaw2010.inesc-id.pt/
http://oro.open.ac.uk/policies.html

How much Semantic Data on Small Devices?*

Mathieu d’Aquin, Andriy Nikolov, Enrico Motta

Knowledge Media Institute, The Open University, Milton Keynes, UK
{m.daquin, a.nikolov, e.motta}@open.ac.uk

Abstract. Semantic tools such as triple stores, reasoners and query en-
gines tend to be designed for large-scale applications. However, with the
rise of sensor networks, smart-phones and smart-appliances, new scenar-
ios appear where small devices with restricted resources have to handle
limited amounts of data. It is therefore important to assess how ex-
isting semantic tools behave on such small devices, and how much data
they can reasonably handle. There exist benchmarks for comparing triple
stores and query engines, but these benchmarks are targeting large-scale
applications and would not be applicable in the considered scenarios.
In this paper, we describe a set of small to medium scale benchmarks
explicitly targeting applications on small devices. We describe the re-
sult of applying these benchmarks on three different tools (Jena, Sesame
and Mulgara) on the smallest existing netbook (the Asus EEE PC 700),
showing how they can be used to test and compare semantic tools in
resource-limited environments.

1 Introduction

With the rise of sensor networks, smart-phones and smart-appliances, new sce-
narios appear where a number of small devices with restricted resources each
have to handle limited amounts of data. In particular, the SmartProducts pro-
ject [1] is dedicated to the development of “smart products” (namely, cars, air-
planes and kitchen appliances) which embed “proactive knowledge” to help cus-
tomers, designers, and workers in communicating and collaborating with them.
Concretely, Smart Products rely on a platform using small computing devices
(such as gumstix!) which process, exploit, and expose knowledge related to the
product they are attached to through the use of semantic technologies.

While building such a platform, an obvious issue concerns the performance of
semantic technologies on the considered hardware. Indeed, existing tools are usu-
ally designed for large scale applications and data, deployed on high performance
servers, and possibly taking benefit from distributed computing approaches. A
few initiatives have emerged that aim at providing tools dedicated to small de-
vices?, but these are not yet mature enough to be employed in the considered

* Part of this research has been funded under the EC 7th Framework Programme in
the context of the SmartProducts project (231204).

! http://www.gumstix.com/

2see eg., MobileRDF (http://www.hedenus.de/rdf/) and microJena
(http://poseidon.elet.polimi.it /ca/?page_id=59)

scenarios. On the other hand, it is unclear whether popular systems such as
Jena® or Sesame? could actually be used, how they would perform, and how
they would compare on resource-limited hardware. Of course, it can always be
argued that semantic processing can be applied remotely, on a server, so that
the small device only has to act as an interface to semantic data, without having
to handle it directly. In such cases however, mechanisms have to be put in place
to ensure the availability of this data in all the different environments in which
the device might be used, while maintaining appropriate levels of security and
privacy. For this reason, one of the main rational underlying this work is to gain
the ability to answer the question, “How much semantic data can we store and
process on small devices?”, so that we can also evaluate, in a given application,
how much of the data have to be processes externally.

Several benchmarks have been devised to assess and compare the perfor-
mance of semantic tools (see e.g., [2,3]). However, here again, the current focus
on large-scale applications makes these benchmarks inadequate to answer the
above question. They indeed assume the availability of sufficient resources to
run the considered tools on the large amounts of test data they contain. In ad-
dition, as they work at large scale, these benchmarks tend to focus only on two
criteria to evaluate performance: the size of the data and the response time.
When working at a smaller scale, other characteristics than size (e.g., the dis-
tribution of entities in classes, properties and individuals) can have a significant
impact on the tools’ performance. More importantly, to test the ability of a
particular tool to run on a small device, other performance criteria need to be
considered, which are often assumed to be available in sufficient quantities in
large-scale benchmarks (namely, memory and disk space).

For these reasons, we created a set of “smaller-scale” benchmarks for tools
implementing semantic technologies. In practice, each of these benchmarks cor-
responds to a set of ontologies (i.e., semantic documents) varying in size and with
common characteristics (in terms of complexity and distribution of entities). We
also use a set of eight generic queries of varying complexities to be executed on
each of the ontologies in each of the benchmarks. Therefore, running each bench-
mark individually allows us to analyze the behavior of the considered tools in
specific situations (according to particular data characteristics) and comparing
the results of different benchmarks helps in understanding the impact of param-
eters other than the size of the ontology on various performance measures.

We experimented with running the created benchmarks on three popular
tools—Jena, Sesame and Mulgara—with different configurations, on a very lim-
ited netbook (the Asus EEE PC 700, also called 2G Surf). This netbook has
specifications in similar ranges to the kind of devices that are envisaged in the
SmartProducts project. Hence, measuring response time, memory consumption
and disk space while running our benchmarks on this device allows us to evaluate
the ability and limitations of each of the tested tools if employed in concrete,
small-scale scenarios.

3 http://jena.sourceforge.net,/
4 http://openrdf.org

2 Benchmarks for small to medium scale semantic
applications

In this section, we propose a new set of benchmarks for small to medium scale
applications. Each benchmark is made of two components: 1- a set of ontolo-
gies (semantic documents) of varying sizes; and 2- a set of queries of varying
complexities (common to all the benchmarks).

2.1 Ontology Sets

The sets of ontologies to be used for testing semantic tools have been built fol-
lowing two main requirements. First and most obviously, they had to cover ontol-
ogy sizes from very small (just a few triples) to medium-scale ones (hundreds of
thousands of triples). As expected, and shown in the next section, medium-scale
ontologies represent the limit of what the best performing tools can handle on
small devices. Second, these sets of ontologies should take into account the fact
that, especially at small-scale, size is not the only parameter that might affect
the performance of semantic tools. It is therefore important that, within each
set, the ontologies vary in size, but stay relatively homogeneous with respect to
these other characteristics. In this way, each set can be used to test the behav-
ior of semantic tools on a particular type of ontologies (e.g., simple ontologies
containing a large number of individuals), while comparing the results obtained
with different ontology sets allows us to assess the impact of certain ontology
characteristics on the performance of the considered tools. In addition, we also
consider that relying on real-life ontologies (i.e., ontologies not automatically
generated or composed for the purpose of the benchmark) would lead to more
exploitable results.

In order to fulfill these requirements, we took advantage of the Watson Se-
mantic Web search engine® to retrieve sets of real life ontologies® of small to
medium sizes. We first devised a script to build sets of ontologies from Wat-
son grouping together ontologies having similar characteristics, therefore build-
ing homogenous sets with respect to these characteristics. The parameters em-
ployed for building these groups are the ratio umber of Propertics ') 1a¢i0

Number of Classes
Number of Individuals . . s .
Number of Classes ~ and the complexity of the ontological description, as ex-

pressed by the underlying description logic (e.g., ALH). The 2 first parameters
were allowed a derivation of more or less 50% from the average in the group (on-
tologies rarely have exactly the same values for these characteristics). As a result
of this automatic process, we obtained 99 different sets of ontologies. We then
manually selected amongst these sets the ones to be used for our benchmarks,
considering only the sets containing appropriate ranges of sizes (see summary of
the selected benchmark ontology sets in Table 1).

® http://watson.kmi.open.ac.uk
5 Here we use to word ontology to refer to any semantic document containing RDF
descriptions, including documents containing individuals.

Table 1. Summary of the 10 benchmark ontology sets. The name of each set is given
according to its number in the original automatic process. Size is in number of triples.

lName[Ontos[Size range[Ratio prop./class[Ratio ind./class[DL Expressivity‘

12 9 9-2742 0.65-1.0 1.0-2.0 ALO
37 7 27-3688 0.21-0.48 0.07-0.14 ALH
39 79 2-8502 no class no class -
43 56 17-3696 0.66-2.0 4.5-20.5 -
53 21 |3208-658808 no property no individual EL
54 11 |1514-153298 no property no individual ELRA+
56 20 8-3657 no class no class -
58 35 7-4959 1.41-4.0 no individual AL
66 17 1-2759 no property no class -
93 11 43-5132 1.0-2.0 13.0-22.09 -
2.2 Queries

Since our benchmarks are derived from various, automatically selected ontolo-
gies, we needed a set of queries generic enough to give results on most of these
datasets. We therefore devised eight queries of varying complexities, which are
based on the vocabularies of the RDFS, OWL, and DAML+OIL languages:

1. Select all labels. This is a basic query which returns all rdfs:label datatype
values.

2. Select all comments. This query returns all rdfs:comment values. Usually
these values are longer than rdfs:label, but more scarce.

3. Select all labels and comments. This query checks the ability of the tool to
deal with OPTIONAL clauses.

4. Select all RDFS classes. This is a basic query which returns RDF resources of
type rdfs:Class. Its results can be different depending on whether reasoning
is applied and whether the tool is aware of the subClassOf relation between
RDFS and OWL classes.

5. Select all classes. This query explicitly searches also for OWL and DAML
classes in addition to RDFS classes. The query constructs a union of several
clauses.

6. Select all instances of all classes. This query contains the clauses of the
previous query augmented with joint patterns. The set of results for this
query varies depending on whether reasoning is applied: reasoning produces
more answers to the query because each instance belonging to a subclass is
inferred to belong to a superclass as well.

7. Select all properties applied to instances of all classes. This query adds an
additional joint pattern to the previous one.

8. Select all properties by their domain. This query centers on properties and is
also supposed to return different sets of results depending on the reasoning
mechanism enabled.

The SPARQL queries corresponding to the descriptions above are also avail-
able at http://watson.kmi.open.ac.uk/small-scale-benchmarks.

3 Applying the benchmarks

In our experiments, we focused on two goals: 1- Testing the behaviour of popular
semantic data storage tools on a resource-constrained device; and 2- comparing
the performance ranking of the same tools when processing small and to medium
scale datasets.

As a hardware platform to conduct the experiments we selected the Asus
EEE PC 2G Surf netbook (the oldest version of Asus EEE netbooks) with 900
MHz CPU, 512 MB RAM and Puppy Linux” installed. This provides a good ref-
erence platform as it has similar specifications to common embedded computing
devices®, as well as to top-of-the-range smart-phones” while being reasonably
convenient to use.

We have selected three of the popular semantic data store tools, which pro-
vide Java API interface: Jena, Sesame 2, and Mulgara'®. We did not test some
other storage tools specifically designed for handling large scale datasets such
as Virtuoso or 4store because of their high initial resource requirements (e.g.,
Virtuoso installation requires 62MB of disk space). Because Jena and Sesame
provide ontological reasoning capabilities, we tested these tools in two modes:
without reasoning and with RDF'S reasoning to estimate the additional resource
usage caused by inferencing. The following test system configurations were used:

— Jena TDB v0.8.2.

— Jena TDB v0.8.2 with the Jena native RDFS reasoner.

— Sesame v2.2.4 with the RDF Native SAIL repository.

— Sesame v2.2.4 with the RDFS Native SAIL repository (i.e., with reasoning).
Mulgara v2.1.6 (Lite).

Each test consisted of the following steps:

Creating an empty data store.

Loading an ontology into the data store.

Running queries 1-8.

Measuring the disk space taken by the data store.

Cleaning the data store (physically deleting the corresponding files).

e LN

For each step we measured the time cost and the size of the Java heap space
used by the virtual machine. Because of the resource limitations of the chosen
netbook, we have restricted the maximum heap size to 400 MB.

3.1 Results

Table 2 gives a summary of all the results obtained after running the 5 different
tool configurations described above on our 10 benchmark ontology sets. We can
distinguish 2 sets of measures in this table: measures related to the performance

" http://www.puppylinux.com/

8 For example, the SmartProduct project employs Overo Air gumstix with 600 MHz
CPU and 256 MB RAM.

9 For example, the Apple iPhone 3GS has a 600Mhz CPU and 256 MB of RAM, and
the Sony Ericsson XPeria X10 has 1GHz CPU and 1GB of memory.

10 http://www.mulgara.org/

Table 2. Average measures for the different tools using the different benchmark sets.

[Benchmark | 12 37 39 43 53] 54 [56] 58] 66 93|
Jena No Reasoning

of ontologies treated 9 7 78 56 19 11 20 35 17 | 11
% of overall size processed 100% [100% | 80% |[100%| 43% | 100% |100% |100% |100% [100%
Avg. load time/triple (ms) 54 | 26 | 48 | 12 1 2 37 | 32 | 271 | 13
Avg. memory/triple (KB) 267 | 86 | 265 | 80 1 1 180 | 199 | 1023 | 32
Avg. disk space/triple (KB) 9 2 14 3 0.17 | 0.19 4 5 27 10.93
Avg. time query/Ktriple (ms) | 2460 | 969 | 1722 | 604 | 232 149 | 1448 | 1155 | 8067 | 442
Avg. # of query results 22 | 114 | 0.87 | 13 | 3318 | 2874 7 12 1 0.97| 80
Avg. time/K query result (ms)| 6089 | 4564 | 601 | 1297 |335272| 147 | 6456 | 1480 | 1998 | 2913
Jena RDFS Reasoning

of ontologies treated 9 6 78 56 2 1 20 34 17 11
% of overall size processed 100%| 39% | 80% |100%| 0% 0% |100%| 44% [100% [100%
Avg. load time/triple (ms) 65 | 32 | 50 | 12 2 6 38 | 33 | 254 | 13
Avg. memory/triple (KB) 284 | 106 | 282 | 85 2 5 191 | 216 | 1035 | 34
Avg. disk space/triple (KB) 7 2 14 3 0.17 | 0.19 4 5 27 10.93
Avg. time query/Ktriple (ms) [13317|10363|10717| 4110 | 15078 | 28307 |10732|37353]44078|2710
Avg. # of query results 75 | 113 | 240 | 357 | 551 297 99 | 130 | 87 | 216
Avg. time/K query result (ms)|17403|64531| 5606 | 3144 (955122|1381216|13461|79262(23116| 6481
Sesame No Reasoning

of ontologies treated 9 7 78 56 21 11 14 7 17 11
% of overall size processed 100%|100% | 80% [100%| 100% | 100% | 9% | 1% |100% |100%
Avg. load time/triple (ms) 12 6 7 3 1 1 9 17 | 38 3
Avg. memory /triple (KB) 32 12 29 10 0.16 0.23 28 62 115 5
Avg. disk space/triple (KB) 0.51]0.24 | 053 |0.21| 0.1 0.12 | 047 | 1 1]0.15
Avg. time query/Ktriple (ms) | 2334 | 987 | 1235 | 336 | 43 60 1738 | 3955 | 9816 | 408
Avg. # of query results 22 | 114 | 0.87 | 53 | 8329 | 2874 2 1 1 80
Avg. time/K query result (ms)| 3899 | 2905 | 710 | 1877 | 117 272 | 1984 | 4587 | 750 |1844
Sesame RDFS Reasoning

of ontologies treated 9 7 78 56 21 11 14 7 17 11
% of overall size processed 100%|100% | 80% [100%| 100% | 100% | 9% | 1% |100% |100%
Avg. load time/triple (ms) 16 10 8 4 3 4 11 25 50 5
Avg. memory/triple (KB) 55 17 | 50 | 17 | 0.23 | 0.34 46 | 107 | 160 | 8
Avg. disk space/triple (KB) 1 |045{096| 04 | 0.14 | 0.18 | 0.96 | 2 3 10.25
Avg. time query/Ktriple (ms) | 2942 | 1156 | 1578 | 401 122 152 | 2100 | 5670 |14277| 511
Avg. # of query results 58 | 153 | 29 | 102 | 10617 | 3882 22 16 53 | 154
Avg. time/K query result (ms)| 3389 | 3172 | 1272 | 610 | 99367 | 31836 | 1405 | 2685 | 1585 | 1322
Mulgara

of ontologies treated 9 7 78 56 19 11 20 35 17 11
% of overall size processed 100%[100% | 80% |100%| 43% | 100% |100% |100% |100% [100%
Avg. load time/triple (ms) 141 | 54 | 132 | 49 2 2 105 | 110 | 595 | 27
Avg. memory/triple (KB) 139 | 49 | 141 | 41 | 0.43 | 0.62 96 | 101 | 522 | 17
Avg. disk space/triple (KB) 3778 11650 | 6090 | 2175 | 32 43 | 5757 | 7261 |43412| 1451
Avg. time query/Ktriple (ms) | 9909 | 5875 | 5340 | 2651 | 1291 | 1399 | 4896 | 4719 |27589|2704
Avg. # of query results 22 | 114 | 0.87 | 53 | 3318 | 2874 7 12 1 0.97| 80
Avg. time/K query result (ms)|14916| 9056 | 2942 |16256| 885 1390 | 3780 | 6655 | 4713 | 5466

of the tools (e.g., loading time) and measures related to their robustness (i.e.,
their ability to process large numbers of heterogeneous, real-life ontologies). In-
deed, concerning robustness, each benchmark was run automatically for each
tool, processing the ontologies in the corresponding set in an order of size. When
a tool crashed on a particular ontology, unless an obvious error could be cor-
rected, the test on the corresponding benchmark was interrupted. As can be
seen from Table 2, the different tools tend to break on different benchmarks
(with benchmark 39 being commonly problematic to all of them). In addition,
while the application of RDFS inferences does not seem to affect the ability of
Sesame to process ontologies (it consistently breaks on the same ontologies, and
no other), Jena tends to be a lot less robust when reasoning is applied, espe-
cially on medium size ontologies, most likely due to the increase in its need for
resources. All together, Mulgara and Jena without reasoning appear to be the
most robust tools with 8 out of 10 benchmarks being covered at 100% (here, per-
centage is expressed with respect to the sum of all the triples in all the ontologies
of the benchmark). The fact that they can process exactly the same number of
ontologies can be explained by the fact that Mulgara uses Jena as a parser.

Regarding performance measures, we give more details below on the behavior
of each tool configuration concerning loading time, memory consumption, disk
space and query response time. However, generally, it appears quite clearly that
Sesame (without reasoning) tends to outperform the other tools at small-scale.
As we will see, this is less true at medium-scale, and other benchmarks have
shown that, at large-scale, the difference between Sesame and Jena tends to be
inverted [3]. This can be explained by the fact that Jena and Mulgara generally
allocate larger amounts of resources straight from the start, while an “empty
Sesame” is very lightweight. In other terms, it seems that the “fixed cost” asso-
ciated with processing ontologies with Sesame is significantly lower than the one
of Jena and Mulgara, whereas the “variable cost” appears to be higher. While
this turns out to be a disadvantage at large-scale, it certainly makes Sesame a
stronger candidate in the scenarios we consider here, i.e., small-scale, resource-
limited applications.

16000 F—s— Jena No Reasoning

14000 = Jena RDF-S Reasoning

12000 = —*— Sesame No Reasoning //
D000 E T Sesame RDF-S Reasoning

F —— Mulgara
8000 ¢ / /

6000 F
4000 E
2000 F
ok

Time (m

0 1000 2000 3000 4000 5000
Size of ontologies (number of triples)

Fig. 1. Loading time with respect to size of the ontologies in benchmark 39.

Loading time refers to the time (expressed in milliseconds) taken by each
tool to parse the file containing the ontology, create the internal data structures
necessary to process this ontology, and store the information contained in the
ontology in these internal structures. Naturally, this measure depends a lot on

the storage device employed, but the way each tool represents the ontologies
internally also has a significant impact. Indeed, as can be seen from Table 2,
loading ontologies takes significantly less time for Sesame than for any other
of the tested tool. Mulgara, on the other hand, creates many indexes for the
data, which clearly impacts negatively on this measure. It can be noticed that
applying RDFS reasoning with Sesame influences loading time, with supposedly
some inferences being drawn already when initializing the ontology model, while
it is not the case for Jena. Figure 1 shows a typical evolution of loading time with
respect to the size of the ontology (using benchmark 39). Here we can see that
Sesame was able to load more than 5000 triples in less than 5 seconds without
reasoning, compared to around 12 seconds with reasoning. Mulgara took almost
16 seconds. It is interesting to see also how Jena loads ontologies apparently
independently from the use of RDFS reasoning.

Having compared the results obtained for different benchmarks, we can ob-
serve that the tools behave consistently with respect to loading time indepen-
dently from variables other than size. Sesame with reasoning, however, performs
better than Mulgara for small ontologies only, and ends up taking longer for on-
tologies above a few thousand triples. Also, loading time appears to be slightly
higher for ontologies with the same number of triples but more expressive de-
scription logics. This could be explained by a higher density of description for
classes in these cases.

Memory consumption is described in Table 2 by providing the average mem-
ory space required (in kilo-bytes) per triple in each ontology. As for loading time,
this is measured right after having loaded the ontology from the file, evaluating
the amount of memory required to make the model accessible. Here, Sesame
appears again to be the best performing tool at small scale, both when applying
reasoning and not. While using reasoning in Sesame add an increment to mem-
ory consumption, for Jena reasoning does not have a significant impact on the
memory consumption at loading time. Regarding memory consumption, Mul-
gara seems to be generally less demanding than Jena (both with reasoning and
without). While differences appear on average between benchmarks of different
sizes, within benchmarks, no correlation is visible between the size of the ontolo-
gies and the memory consumption (due to the use of persistent storage on disk),
except for Jena which shows a slight, linear increase of memory consumption
with size.

Disk space is also measured at loading time, calculating the overall size at the
location on the local disk where each of the tools keep their stores. Here again,
Sesame stands out as being the least demanding when reasoning is not applied,
but also, to a smaller extent when reasoning is applied. Since Jena does not store
the results of inferences, there are very little differences in terms of required disk
space when applying RDFS reasoning and when not. While Jena and Sesame
perform comparably, Mulgara can be seen as being extremely demanding in
terms of disk space. Indeed, contrary to Sesame, which almost does not require
any disk space at all when running without any ontology loaded, Mulgara allo-
cates a lot of space for storage structures such as indexes at starting time (in our

I —=— Jena No Reasoning

725107 Jena RDF-S Reasoning ~
g‘ [—a— Sesame No Reasoning " __—
& 20" F —+ Sesame RDF-S Reasoning -
= s
8 1.5x107 |
« F
=% F
o 1107 F
2 d
0 6 |
& 5x10° F

0E P IR IR RN TR B B

0 20000 40000 60000 BODDO 100000 120000 140000
Size of ontologies (number of triples)
Fig. 2. Disk space consumption at loading time with respect to size of the ontologies
in benchmark 54.

experiments, around 150MB), which makes it a very weak candidate in scenarios
where small-scale ontologies are processed on devices with limited storage space.
As shown in the graph Figure 2 looking at benchmark 54, disk space seems to
increase linearly with the size of the ontology for Jena and Sesame. Mulgara is
absent from the graph (as it was orders of magnitude higher than the others),
but here as well, disk space consumption increases linearly, with a slightly lower
factor than Sesame and Jena. In the example Figure 2, for more that 15000
triples, Sesame takes between 15 MB and 20 MB of disk space depending on
whether reasoning is applied, and Jena takes almost 30 MB.

50000 |- —* Jena No Reasoning
| Jena RDF-S Reasoning
40000 | —*— Sesame No Reasoning
@ [—+— Sesame RDF-S Reasoning
E 30000 F —— Mulgara
[} o
E 20000 F
= -
10000 |
a — a—W
U_-,,,,,‘,‘,,,“,,,‘,‘, | L,
0 500 1000 1500 2000 2500 3000 3500

Size of ontologies (number of triples)

Fig. 3. Query response time (sum on all the 8 queries) with respect to size of the
ontologies in benchmark 43.

Query time is measured when executing the 8 queries defined in Section 2.2.
While analyzing the results for each individual query could help identifying some
fine-grained behavior, we focus here on the global performance of the tools and
consider the overall time to execute the 8 queries. Looking at the average results
presented in Table 2, Sesame and Jena appear to be performing well, in similar
ranges, when reasoning is not applied. However, as already noticed before, these
two tools apply different strategies concerning inferencing. Indeed, Sesame ap-
plies and stores results of inferences when loading the ontology (making loading
time higher), while Jena applies reasoning at query time. This difference appears
very clearly in the results concerning query times. In accordance with its “pre-
inferencing” strategy, Sesame provides results with inferences in times very close
to the ones without inferencing. For Jena, however, applying reasoning leads to a

very significant increase in query time. This difference in behavior is visible in the
graph Figure 3, showing the sum of the times required to execute our 8 queries
in relation to the size of the ontologies in benchmark 43. As can be seen, even
if it does not include any reasoning facility, Mulgara performs relatively badly
compared to Jena and Sesame. Indeed, while Jena without reasoning, as well
as Sesame both with and without reasoning are able to execute queries in near
real-time even on such a small device as our netbook, Mulgara and Jena with
reasoning would need up to 38 and 50 seconds respectively to provide results for
an ontology of less than 4000 triples.

Another interesting observation concerns the differences in the results of the
queries. Indeed, looking at Table 2, the three tool configurations which do not
apply reasoning obtain reasonably consistent results on our set of queries (on the
benchmarks where they all managed to process the same number of ontologies),
meaning that they interpret SPARQL queries in very similar ways. However,
while analyzing the number of results obtained by the two tools applying rea-
soning, significant differences appear. The explanation to this phenomenon is
that, in addition to having different strategies on when to apply reasoning, these
tools implement RDF'S inferences differently, with Jena generally obtaining more
results (i.e., entailing more new statements). Additional investigations would be
required to find out whether this is the result of different interpretations of the
semantics of RDFS, of incomplete results from Sesame, or of incorrect results
from Jena.

4 Conclusion

In this paper, we have established a set of small to medium scale benchmarks to
test the performance of semantic tools on small devices with limited resources.
Using these benchmarks and through extensive tests we have shown that tools
such as Sesame, and to a smaller extent Jena, were able to cope reasonably well
with small-scale ontologies on a very resource limited netbook. These results
provided new insights into the behaviour of semantic data management tools
in comparison with large-scale benchmarking tests of the same tools. Of course,
the benchmarks we developed can be used to test any other semantic tool on
any other platform, providing the availability of the necessary underlying infras-
tructure on such a platform. While the results obtained are encouraging, they
also validate our intuition that existing semantic technologies are developed with
large-scale applications in mind and that more work is needed to develop seman-
tic software infrastructures dedicated to small-scale applications running with
limited hardware resources.

References

1. Sabou, M., Kantorovitch, J., Nikolov, A., Tokmakoff, A., Zhou, X., Motta, E.: Po-
sition paper on realizing smart products: Challenges for semantic web technologies.
In: Workshop: Semantic Sensor Networks (SSN09), ISWC. (2009)

2. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems.
Journal of Web Semantics 3(2-3) (2005) 158-182

3. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. International Journal on
Semantic Web and Information Systems 5(2) (2009) 1-24

