iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

Non-uniform dependences partitioned by recurrence
chains

Conference or Workshop Item

How to cite:

Yu, Yijun and D'Hollander, E. H. (2004). Non-uniform dependences partitioned by recurrence chains. In:
2004 International Conference on Parallel Processing (ICPP’'04), 15-18 Aug 2004, Montreal, Canada.

For guidance on citations see FAQs.

(© 2004 IEEE
Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/1CPP.2004.1327909

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data |policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ICPP.2004.1327909
http://oro.open.ac.uk/policies.html

DRAFKT

Non-uniform dependences partitioned by recurrence chains

Yijun Yu Erik H. D'Hollander
DCS, University of Toronto, Canada ELIS, Ghent University, Belgium

_) Abstract i.e. indices that appear in both dimensions, often cause
Non-uniform distance loop dependences are a known ob-pqon_yniform distances as well. A study of 12 other bench-
stacle to find parallel iterations. To find the outermost 100p 15rks [21] shows that about 45% of two dimensional ar-
parallelism in these “irregular” loops, a novel method is 4y reference pairs are coupled linear subscripts. Includ-
presented based on recurrence chains. The scheme 0r98hg one-dimensional arrays, about 12.8% of the coupled
nizes non-uniformly dependent iterations into lexicograph- subscripts in theSPECTp95 benchmarks generate non-
ically ordered monotonic chains. While the initial and final | iform dependences. The percentage of loops with non-
iteration of monotonic chains form two parallel sets, the | niform dependences is higher because a single pair of non-

remaining iterations form an intermediate set that can be niform coupled subscripts will cause non-uniform loop de-
partitioned further. When there is only one pair of coupled pendences.

array references, the non-uniform dependences are repre- h all d d b ial i
sented by a single recurrence equation. In that case, the”r Way to catch all dependences by sequential linear steps

chains in the intermediate set do not bifurcate and each through the iteration space is to find a set of vectors whose

can be executed as a WHILE loop. The independent iter-inear combinations compose all distance vectors [23, 26,
ations and the initial iterations of monotonic dependence 6]. 2;—0 enlable DSALL part_|ft|on|n3_, a previous 50“??9
chains constitute the outermost parallelism. The proposedIn [27] replaces the non-uniform distance vectors with a

approach compares favorably with other treatments of non- St OI pseudo dlstancek vec_:ftor:s. They ‘?}”OW (?OALL loop
uniform dependences in the literature. When there are mul-ransformations to work as if they are uniform distance vec-

tiple recurrence equations, a dataflow parallel execution tors because an integer linear combination of these lexico-

can be scheduled using the technique extensively to fingraphically positive (LP) vectors covers all the non-uniform
maximum loop parallelism dependences. It finds maximal parallelism when the depen-

Keywords non-uniform dependences, loop parallelization, Qences are uniform, but may generate artificial dependences

recurrence chains, iteration space partitioning, imperfectly " the non-uniform case.
nested loop To avoid introducing artificial dependences into the loop,
1. Introduction another way of treating the non-uniform dependences is

Data dependences of a program lead to maximal parallelism?@5€d on exact solution of the dependence equations [11].
by a data flow execution. A more restricted parallelism is Although it is generally impossible to enforce data flow
implemented in common parallel programming IanguagesSChedU|_'”g at _complle time, recurrence chaln partitioning
because the loop control limits the traversal of the iteration Makes it possible when there is only one pair of coupled
space to regular patterns. Common language support forsubscripts or there is no compile-time unknown variable in

parallelism is parallel DO loops (DOALL). It is one of the the l0op bounds. The recurrence chain partitioning sepa-
most important goals for parallelizing compilers to reveal rates the iteration space into three sequential partitions. The

loop parallelism [1, 16, 30, 8, 27]. The loop can run in first anq the last sets are fglly para!lel. Whe.n there 'is onl){
parallel when no data dependences exist between any tw@n€ Pair of pqu_pled subscrl_pts, the mtermedl_ate set is parti-
iterations with different index values. This is judged by var- tioned as disjoint monotonic recurrence chains th_at can be
ious dependence tests [29, 14, 18, 22]. Moreover, some loogEXecuted as WHILE loops. When there are multiple cou-
nests being tested as sequential can still be parallelized afteP!®d Subscripts and loop bounds are known at compile time,
suitable loop transformations. the m'Fermedlate setis supge;swely partitioned into subsets
Existing DOALL loop transformation methods focus on following the dataflow until it is empty.

loops with uniform distance dependences [2, 9]. There The remainder of the paper is organized as follows. Sec-
are, however, many loops with non-uniform distance de- tion 2 presents the program model for non-uniform distance
pendences where these transformations can not be appliedlependences. Section 3 illustrates the recurrence chain par-
For instance, we found that more than 46% of the nestedtitioning scheme by showing what kinds of dependences
loops in theSPECfp95 benchmark contain non-uniform form the recurrence chains and how to generate the par-
data dependences. Furthermore, coupled array subscriptsgllel partitions. Section 4 presents the results of applying

Yijun Yu

different schemes on some program examples and section 5 i
o w0l ..
compares it with related work.

normalized to have a unit stride and each loop index vari-
ablel; is constraint by a lower bound and an upper bound
q;- The loop bounds are affine functions of the index vari-
ables in the outer loops. Thteration spaced of the loop

is a vector set of all values taken by the integer loop indices

{i 1)

Loop carried dependences occur when the same array-

element is addressed in two different iterations, where at ‘ _ 4 24 itioninal9l and oth 151 U
least one of them is a write. Assume an array X is referred transformations[4, 24], partitioning[3] and others [15]. Un-

s DO 11=1,N1
i DO 12=1,N2
2. Prpgram model . , ! a(3*11+1,2*11+12-1)
Consider the coupled array subscripts occurrimested o1 =a(11+3,12+1)
loops: Ly,...,L,,. Forl = 1,...,m, every loopL; is 4 ENDDO
s ENDDO
2

Figure 1. An example loop and its iteration
space. The direct dependences are shown as
arrows with direct distance (d,d) where d =
2,4,6 are marked to the left of the arrow tails.

(i1 im) |t <0 <@, 1 <1<m,icZ™}.

with affine index expressionsX [IA + a] and X [IB + b]
wherel denotes the vector of loop indexing variables, inte-
ger matricesA, B and vectors, b are constants. Airect
dependenceccurs between iteratiorisandj if 1) the dio-
phantine equation has a solution

iA+a=jB+b @)

2) and the solution is within the loop boundsj € ®.

A solution of the diophantine equations results in a pair of
directly dependent iterationd, j), also noted agi — j).
The union of these pairs is called td@ect dependences
setof the loop,A. An indirect dependencbetweeni and

j occurs when there exists a chain/f > 1 direct depen-
dences{(iy,ix11) € Aforl <k < M,i; =iandiy =].
Including both direct and indirect dependences,dbpen-
denceseis AT = {(i,j) | (i,j) €e AvIk: (ik), (k,j) €
A}. Thedependence distandeetween two dependent it-
erationsi andj isd = j — i. The union of all distances
in a dependence set is calldte dependence distance .set
Therefore the direct dependence Aetives rise to thali-
rect distance seD. Likewise the dependence distances in
a loop are represented by tHistance seD*. For any two
direct dependent iteratiorig j) € A and any non-zero vec-
torc € Z™,if (i+c,j+c) € Aaslongas+c,j+c € P,
then the loop haaniformdependences. In all other cases,
the dependences of the loop a@n-uniform

Consider an example from [27], as listed in figure 1. The
iteration space of this loop isP = {(i1,i2) | 1 < i1 <
Ni,1 < iy < No,i1,i9 € Z}. A dependence equation is
established as a system of diophantine equations:

{

The solutions of (eq.3) are a set of direct dependences
WhenN; = N, = 10, the dependences are non-uniform
because e.d1,2) — (3,4) does notimply(1,1) — (3, 3).

The detection of parallelism in uniform dependence loops
has received widespread attention, e.g. by unimodular

311
211

+3
+1

+1
-1

J

. . 3
+12 = J2)

fortunately, many loops contain non-uniform dependences,
for which no general mathematical approach is available
to detect the parallel iterations. A number of alternatives
have been proposed for the case of affine index expressions,
e.g. uniformization oriented techniques with DOACROSS
synchronization [23, 26, 6, 19] and dataflow oriented tech-
nigues [20, 11].

In this paper, the loops with non-uniform dependences
are parallelized using WHILE loops with irregular strides.
Dataflow oriented code in the cases where the uniformiza-
tion method such as PDM [27] allows for extra paral-
lelism, a recurrence chain partitioning in section 3 con-
structs WHILE loops with irregular strides to follow the
non-uniform dependences.

3. Recurrence chain partitioning

To avoid artificial dependences introduced by uniformiza-
tion methods [27], our recurrence partitioning scheme dis-
covers dataflow parallelism by solving exact dependences.
Using exact dependences, each stepathflowpartition-

ing puts the iterations without lexicographically predeces-
sors into an initial fully parallel set and partitions the re-
maining iterations successively until no more iteration is
left. Besides the initial set, a three-sets dataflow partition-
ing also separates the iterations without lexicographically
successors as a fully parallel final set. When the depen-
dences can be solved as dependence convex hulls, however,
the dataflow partitioning may not terminate at compile-time
for unknown loop bounds. Therefore a special treatment is
proposed here to allow partitioning for loops with unknown
bounds and a single pair of coupled subscripts. In one step,
it separates the intermediate set of the three-set dataflow
partitioning into disjoint monotonic dependence chains.

Definition 1. Monotonic dependence chain A monotonic

dependence chain is a sequence of lexicographically ordered iter-
ations in which each iteration directly depends on a unique imme-
diate predecessor iteration. |

For example, the loop in figure 2 has non-uniform depen-

termediate set are empty. For the monotonic chains in the

1//2/ 3”;’;’:5::;::?;\;\ 111213 14 15 16 17 18 19 20 DO |:1,20 intermediate set to be diSjOint, it requires a Single pair of
w °fefe a(2*)=a(21-1) coupled subscripts. According to the dependence relation
ENDDO in (eq.4), anindependentteration that has neither prede-

cessor nor successor; otherwise it idegpendentteration
with predecessors or successors. A dependent iteration that

Figure 2. The loop dependences are solved has no predecessor is @mitial iteration, a dependent itera-
as {i —j|2i=21—;}where i <jori>jare tion that has no successor ifimal iteration, otherwise a de-
respectively solid or dashed arrows. pendent iteration that has both predecessors and successors

is anintermediateiteration. Therefore the whole iteration
dences. The dependences are separated into monotonigpace is composed of independent, initial, intermediate and
chains. A solution chaifh — 9 — 3 — 15 is separatedinto final iterations. Usinglom (R) andran (R) respectively
three monotonic chaing — 9,3 — 9 and3 — 15. Each to denote the relatio®’s domain domR = {x | (x —
monotonic chain has only two iterations, thus the iteration y) € R} and range ral? = {y | (x — y) € R},
space is partitioned into two sets. The first set is the unionthe sets are calculated from the dependence reldtign
of the initial iterations{1, 2, 3,4, 5, 6} and the independent and the iteration spaceé as: dep= (dom R, U ran Rg),

iterations{7, 12, 14,16, 18, 20}. initial = dep)\ ran Ry, intermediate= dom R; N ran R,
The dependences can be specified as a relation in the iterand final= dep\ dom i,. The independent and initial it-
ation space. Consider a dependence equdton- a = erations are in amitial set P; of the iteration space, the

jB + b established from two references in two iterations intermediate iterations are in amtermediate sef’» and the
with index vectors andj respectively. Ifi < j, iterationi final iterations are in afinal setP;. They are calculated as

is called apredecessoof iterationj a_ndj a successoof i. P, =&\ ran Ry, P, = ranRy N dom Ry

The exact depe_ndences are the union of the predecessor and Ps = ranRy \ dom Ry (5)
successor relations:

A dependence occurs only from an initial iteration to an in-
termediate one, from an intermediate iteration to another, or
@) from an intermediate it_eration to a final one. Thus the three
For multiple coupled subscripts, the combined dependence‘,se'[S can .be executed in the orderfof — P, - Ps. The
relation unions all the dependence relations of each depenlNtérmediate sef’ needs to be further partitioned for de-
dence equation. An accurate solution to a union of integerpendences occurinside{it — j| (i — j) € Ra,1,j € P}
convex sets can be found by the algorithm [18] implemented

in an integer programming tool, the Omega library. gtgrt:; gwgr%nc;ggetr?gelr?ggggﬁgtligae(e?gitg)yra —iB+b

when bothA and B are full rank square matrices, there
is an one-to-one recurrence relation between the dependent
iterations.

Ry = RpreaURwuee ={j—i|liA+a=jB+b,j<i}
U{i—jliA+a=jB+b,i<j}

3.1. Partitioning the iteration space into three sets
Intuitively, the iteration space can be partitioned into sep-
arate monotonic chains. Starting from an initial iteration,
i.e. an iteration without predecessors, a WHILE loop can Lemma 1. When there is only one pair of coupled references
be formed for each monotonic chain by updating the iter- with full rank coefficient matriceA. and B, the monotonic depen-
ation index iteratively until it exceeds the border of itera- dence chains in the intermediate get are disjoint, i.e., there is
tion space. However, even when the dependent iteration<°nly one predecessor and one successor for each iteratiéh.in
are on separate recurrence chains, the lexicographical orProof. Each iteration in? has at least one predecessor and one
der is not always followed by a WHILE loop. In that case, successor becaug® is tht_a mters_ectlon of the domain and range
several monotonic dependence chains may intersect at th f the dePlendence relat'oﬂ'l Singe and B are full rank, let
same iteration, e.g. figure 2 shows that a WHILE loop up- =BA" ,u=(b—a)A" The dependence (eq.2)is rewri-
L T . i i ' ten as:i = j T + u. Supposeélj € P, such that there are two dif-
dating indices succes_swely by = 21 — 2_1, forms phaln ferent predecessots andis, thusi; — jT + u andiz = jT + u.
6 — 9 — 3 — 15 which violates the lexicographical or- fowever,i, = i,. Thus there is only one predecessor for all iter-

dering, whereas monotonic chaifis— 9,3 — 9,3 — 15 ationj € P». Similarly only one successor follows each iterations
intersect, such that iteratiols9 will be executed twice. i € P, by replacingT with AB™! anduwith (a—b)B~'. O

The recurrence chain partitioning only executes the initial Since the monotonic chains are disjoint in the intermedi-
and final iterations once. The iteration space is separatedate set, a compile-time recurrence chain partitioning is ap-
into two fully parallel sets and one intermediate set so that plicable to the intermediate set instead of doing unlimited
the monotonic chains in the intermediate set are separatesteps of dataflow partitioning when loop bounds contain un-
or as in the above example, the monotonic chains in the in-known variables.

The dependence relaton B; = {j — i|i = (j— to the unique index vectors for statements outsides the in-
T Lj=<ilu{i—j|j=iT +u,i < j}. The initial nermost loop. To make sure the set of statement index vec-
iterationsiy are those without preceding solution in the iter- tors forms a union of convex sets, the statements in the same
ation space (either is not integer or is outside the bounds): loop are associated with a sequence of humbers with unit
(ip—u)T~! ¢ ®. The sequence of the recurrent dependent increment. The first statement in the lobp is associated
iterations is on @ependence recurrence chaithe general with s, = 1 for convenience. Both the unified iteration
solution of an iteration on the recurrence chain beginning space with statement instances and the iteration space with
with ig is i = igT* + u(T*~! + ... 4+ T°). The distance loop body instances are a union of convex sets. Thus the
vector between the dependent iteratibns, andiy, is partitioning method for them are inherently the same, the
only difference is that we calculate statement-level depen-
(6) dences from the following relations for any two instances of
statementsS; (I; I') and S (I;1%) with unique index vec-
Removing the initial and final iterations, a recurrence chain torss; andt;:
will be separated into disjoint monotonic chains. WHILE
loops are constructed to sequentially execute these mono- Ra = {t; s [1A + a=jB+b,t; < si} @)
tonic chains. If initiallyiy € Rpreq the WHILE loop Ulsi —t[iA+a=jB+bs <t}

changes index bfipreq i.€. I = (I—w)T™!, otherwise 3 4 The recurrence partitioning algorithm

the WHILE loop changes index bysucci.e. I = IT + u. Algorithm 1 summarizes the recurrence chains partitioning
Each WHILE loop starts at an iteration that depends on anscheme. Initially the unified iteration spadeand the de-
initial iteration in P;. The starting iterations are in the fol- pendence relatioR, are calculated. If there is a single pair
lowing set: W = {j | i — j) € R4,i € P1,j € P} of coupled subscripts with full rank coefficient matricas
and the WHILE loop stops when the successor becomes aand B, the recurrence chain partitioning is applied to the
final iteration. Thus the condition for the WHILE loop to intermediate set after a three-set dataflow partitioning ac-
continue isi € (@ \ final) =1i € (¢ NdomRy). cording to® and R,. WHILE loops are generated for each
Only N, U, \, dom, ran operations are applied to the union monotonic chain in the intermediate set. Otherwise, if the
of convex setsP and R, to obtain the fully parallel sets |oop bounds are known at compile-time, the dataflow parti-

Py, W, P5. Therefore each of them can be specified by a tioning is successively done to the iteration spand the
union of convex sets whl_ch is the Iogl_cal c_onjun_cnve nor- dependence sub-relatidty until ® is empty.
mal form where each logical operand is a linear inequality.) o
Although Fourier-Motzkin elimination can be used to gen- Algorithm 1. The recurrence partitioning scheme
erate a DO loop nest for each convex set, it is first necessary"Put: A sequential loop nest with a single pair of coupled
to make the convex sets disjoint. An algorithm exists [13] "ear array subscripts or with compile-time known loop

. . . bounds. The loop body is denoted$d).
to generate loops from a lexicographically ordered union of i

. . . Output: A sequence of DOALL loop nests.

convex sets. The lexicographical order of the convex sets is

] let & be the unified iteration space, calculate dependences as:
not necessary here because they are fully independent. (A+a—jB+bViA+a

. . . Rd:U{Siﬂtj' :jB+b)/\Si-<tj/\Si,tj€(I’}
3.3. Extending the iteration space to statement-level if X@A + a), XAB + b) are the single reference pair ii(I)
To reveal statement-level parallelism in case of imperfectly ~ andA, B are full .rankthen _
nested loops or multiple statements in a loop body, each in- £t = @\ (ran Ra); P> = (ran Rq) N (domRa);
- . . P; = (ran Ry) \ (domRy);

stance of a statemet(I) with loop index vectod = i W=1j|(i—j) € RiAic PLAjE P}

. . . . = d 1 24
needs to be a_ssouateq with a gnlque index vest@uch call DOALLCodeGeneratiorit,, S(I);
that 1) the lexicographical ordering ef reflects the state- call DOALL CodeGenerationiy’, 5’ (I))
ment instances execution order; 2) the set of statement index

di = igy1 — i = (io(T = I) + u)T* = doT"
do =io(T -1I) +u.

” if Ie Rpred) then
vectors forms a union of convex sets. T—AB u(a_b)B
An example of such extension has been proposed by the ’
affine mapping framework in [12]. Assume there agair- else))
rounding loops for a statemesitI). For any instancé (i), wheres/(n= { T=BAu=(b-a)A”
a statement index; is inserted after each loop indéx for end if
k=1,---,landsg is given before the outermost loop in- do while (I € (®nNdomRy))
dexi; to indicate the position of the whole loop nest in the S();I=1IT + u;
program. A unique index vectef = (so, 91,81, -+ ,%,81) end do while

is thus formed. In order to apply lexicographical ordering call DOALLCodeGeneratiod®s, S(I));
on the statement index vectors, dummy zeroes are appendedelse ifthe loop bounds are constattiten

do while (@ is not empty)
P, =@\ (ranRy); ® =@\ Py;
Rey={i—j|(i—]) € RaNijeE D}
call DOALLCodeGeneratiot#t;, S(I))
enddo while
endif
subroutine DOALLCodeGeneratioset Body)
separateSetinto NV disjoint convex set€' Hy,--- ,CHy [13];
doi=1,N
generate a DOALL loop nest with the boBgdy
bounded byC' H; [3];
enddo
feturn

If there are multiple coupled subscripts and the loop bounds31

are unknown at compile-time, the recurrence partitioning

can not apply. In that case, the pseudo distance partitionings3

in [27] is used instead.

The theoretical speedup of the partitioning is determined by3

the execution time of the critical path in proportion to the
number of iterations on the critical path. The following the-
orem states the lower bound of the speedup when the mono

tonic chains do not bifurcate. Consequently the theoretical 40

parallel speedup is at Ieaé‘?' on O(|®|) parallel proces-
sors, wherg®| denotes the number of iterations in iteration
spaced.

Theorem 1. Given a recurrence equatioi,+1 = ixT + u
with non-singular matrixT’, leta = max(|det(T)|, |det(T1)]).
In the iteration spaceb, the critical path found by algorithm 1
contains at most = |log, (L) + 1] iterations, whereL is the
maximum Euclid distance between any two iterations: =
maxi, ipea |[iz — ir]].

Proof. For each distance vectdr= i, — i1, the Euclid distance
is||d|| = +/d?+---+d2,. Supposen is the length of a re-
currence chain by (eq.6)jd,|| = [|do[la™ ora™ = il <
[ldn]| < L. Sincea > 1, the length of the critical path is
n+1< |log, (L) +1]. O

4. Results
This section applies the recurrence partitioning on several

14 ENDIF

15 ENDDOALL

16 ENDDOALL

17 C intermediate partition and while start

18
19
20
21
22
23
24
25
26
27
28
29
30

DOALL i1=4,min((3*N2+5)/8,min((N1+2)/3,7)),3

DOALL i2=(2*i1+3)/3,N2-2*i1+2
chain(i1,i2)

ENDDOALL

ENDDOALL

DOALL i1=10,min((3*N2+5)/8,(N1+2)/3),3

DOALL i2=(2*i1+3)/3,min(N2-2*i1+2,(8*i1-2)/9)
chain(i1,i2)

ENDDOALL

DOALL i2=(8*11+9)/9,N2-2*{1+2
IF (i1-7.le.9%((11-4)/9)) THEN
chain(i1,i2)
ENDIF

ENDDOALL

ENDDOALL

C final partition

DOALL i1=4,min((N1+2)/3,(3*N2-1)/2),3

DOALL i2=max(N2-2*i1+3,(2*i1+3)/3),N2
s(i1,i2)

ENDDOALL

ENDDOALL

DOALL i1=3*(((N1+5)/3+1)/3)+1,

min(N1,(3*N2-1)/2),3

32

34
35

6
37

38
39

*

41 DOALL i2=(2*i1+3)/3,N2

42 s(i1,i2)

43 ENDDOALL

44 ENDDOALL

45 ..

46 SUBROUTINE chain(i,j)

47 DO WHILE (2.le.i.and.3%.le.2+N1
48 * .and.l.le.j.and.2*i+j.le.2+N2)
49 s(ij);

50 IF (i.mod.3.ne.1) RETURN;
51 ip = 3%-2

52 jp = 2%i+-2

53 i =ip

54 = jp

55 ENDDO

56 END

The original loop body is represented as an inlined func-
tion s(4, 7). The first partition index set splits as a union of
convex sets without dependences. Similarly no dependence
is within the intermediate set and the final set. The mono-
tonic recurrence chains in the intermediate set are executed

examples and compares their speedups with other scheme%y a WHILE loop in the subroutine “chain” that can be in-

Example 1 The example in figure 1 after our recurrence
chain partitioning is:

1 C initial partition

2 DOALL i1=1,min(N1,3)

3 DOALL i2=1,N2

4 s(i1,i2)

5 ENDDOALL

6 ENDDOALL

7 DOALL i1=4,N1

8 DOALL i2=1,min((2*1)/3,N2)
9 s(ili2)

10 ENDDOALL

11 DOALL i2=(2*i1+3)/3,N2

12 IF (i1-3.le.3%((i1-2)/3)) THEN
13 s(i1,i2)

lined. Sincedet(T) = 3, the largest partition has at most
|1+ logs(y/ N} + N3)| iterations by theorem 1.

Example 2 Consider another non-uniform dependence
example used by Ju et al [11].
DO I=1,N
DO J=1,N
a(2*1+3,J+1)
ENDDO
ENDDO
The PDM partitioning can only find a parallelism of two in
the innermost loop, thus the recurrence chain partitioning is
applied using algorithm 1:
1 DOALL i=1,12
2 IF(mod(i,2).eq.1)THEN
3 DOALL j=1,min(-i+10,(i-1)/2)

a(1+2*3+1,1+3+3)

4 a(2*i+3,j+1)=a(i+2*j+1,i+j+3) 15 ENDIF

5 ENDDOALL 16 ENDDOALL

6 ENDIF 17 ENDDOALL

7 DOALL j=(i+2)/2,min(i+3,-i+10)

8 a@i+3,j+1)=a(i+21+1,1+j+3) Lines 1-10 areP; and 11-17 areP;. Compare with the
9 ENDDOALL X .

10 DOALL jemax(-+11,1),min(i+3,12) DOACROSS loop generated in [6], this code has only
11 a(2*i+3,j+1)=a(i+2%+1,i+j+3) DOALL loops and theoretically can finish in two iteration
12 ENDDOALL time.

13 DOALL j=(3%i+8)/2,12 i)

14 a(2*+3,j+1)=a(i+2%+1,i++3) Example 4 Cholesky is a kernel in the NASA bench-
15 ENDDOALL marks, in which two imperfectly nested loops contain non-
16 ENDDOALL uniform dependences.

17 i=2 DO 1 J=0, N

18 j=6 10=MAX(-M, -J)

19 a(2*i+3,j+1)=a(i+2%+1,i+j+3) DO 2 I=I0, -1

20 DOALL i=2,8 DO 3 JJ=I0-, -1

21 IF(mod(i,2).eq.0)THEN DO 3 L=0, NMAT

22 DOALL j=1,min(-i+10,i/2) 3 a(Lld)=a(L,l,d)-a(L,dd,1+I)*a(L,1+3J,J)

23 a(2*i+3,j+1)=a(i+2*+1,i+j+3) DO 2 L=0, NMAT

24 ENDDOALL 2 a(Lld)=a(L,l,d)*a(L,0,1+J)

25 ENDIF DO 4 L=0, NMAT

26 IF(i.eq.3)a(2*i+j,i+1)=a(i+2*+1,i+j+3) 4 epss(L)=EPS*a(L,0,J)

27 IF(i.ge.4)THEN DO 5 JJ=I0, -1

28 DOALL j=i+4,min((3*1+6)/2,12) DO 5 L=0, NMAT

29 a(2*i+3,j+1)=a(i+2%j+1,i+j+3) 5 a(L,0,J)=a(L,0,d)-a(L,dJ,J)**2

30 ENDDOALL DO 1 L=0, NMAT

31 ENDIF 1 a(L,0,J)=1./SQRT(ABS(epss(L)+a(L,0,)))

32 ENDDOALL DO 6 1=0, NRHS

For this N=12 case, there is only a single iteration in the =~ PO 7 K=0. N
intermediate set, particularly iteratidg, 6). Therefore th DO 8 =0, NMAT
intermediate set, particularly iteratidp, 6). Therefore the 8 b(i,L,K)=b(l,L,K)*a(L,0,K)

WHILE loop is simplified away. For general N the WHILE DO 7 JJ=1, MIN(M, N-K)
loop can not be removed. When> 1, the maximum dis- DO 7 L=0, NMAT
tance between any two iterations in the iteration space is 7 b(l,L,K+JJ)=b(l, L K+JJ)
- * -a(L,-3J,K+J)*b(l,L,K)
L = /2n. Leta = |det(T)| = 2, thus the longest critical DO 6 K=N. 0, -1
path has at mostog, (L) +1] = |log,(n)+0.5] iterations DO 9 L=0, NMAT
by theorem 1. 9 b(l,L,K)=b(l,L,K)*a(L,0,K)
, .) DO 6 JJ=1, MIN(M, K)
Example 3 Consider the previous imperfect nested loop DO 6 L=0, NMAT
example from Chen et al [6]: 6 b(l,L,K-JJ)=b(1,L,K-3J)
DO I=1,N * -a(L,-3J,K)*b(1,L,K)
DO J=1, When paramete®dMAT=250, M=4, N=40, NHRS=3,
DO K=J,I it takes 238 partitioning steps for the compiler to finish
. = a(l+2*K+5,4*K-J) the recurrence dataflow partitioning (the result code is not
ENDDO shown here to save space). Because there are multiple cou-
a(l-J,1+J)= ... pled subscripts and generally compile-time unknown pa-
ENDDO rameterfNMAT, M, N, NHRS the PDM partitioning is
ENDDO applied:
Our recurrence chain partitioning is applied to find an empty 1 DOALL 6 L=0, NMAT
intermediate sePs, the result code is generated as follows 2 DO 1 J=0, N
(a visualization can be seen in [28]). 3 10=MAX(-M,-J)
1 DOALL I=1,N 4 DO 2 I=10, -1
2 DOALL J=1, 5 DO 3 JJ=I0-, -1
3 DOALL K=J| 6 3 A(LLI)=AL1LI)-AL,II,I+I)*A(L,1+3],J)
4 . = a(l+2*K+5,4*K-J) 72 ALLI)=ALLIFA(L,O,I+J)
5 ENDDOALL 8 4 EPSS(L)=EPS*A(L,0,J)
6 IF (I-J-7.LE.3%((1+J)/4)) THEN 9 DO 5 JJ=I0, -1
7 a(l-J,1+J)=... 10 5 A(L,0,J)=A(L,0,9)-A(L,JJ,J)**2
8 ENDIF 11 1 A(L,0,J)=1./SQRT(ABS(EPSS(L)+A(L,0,d)))
9 ENDDOALL 12 DOALL 6 1=0, NRHS
10 ENDDOALL 13 DO 7 K=0, N
11 DOALL I1=30,N 14 8 B(I,L,K)=B(I,L,K)*A(L,0,K)
12 DOALL J=1,(1-23)/7 15 DOALL 7 JJ=1, MIN(M, N-K)
13 IF (1+J+1.LE.4%((1-J-5)/3)) THEN 16 7 B(I,L,K+JJ)=B(I,L,K+JJ)

14 a(-d1+d)=... 17+ -A(L,-3,K+JI*B(1,L,K)

18 DO 6 K=N, 0, -1 o —
19 9 B(I,L,K)=B(I,L,K)*A(L,0,K) » o ”

20 DOALL 6 JJ=1, MIN(M, K) :
21 6 B(I,L,K-JJ)=B(l,L,K-JJ) s - T
22+ -A(L,-33,K)*B(1,L,K)

Experiments To observe the performance results, one has™
to take the parallel loop overhead and loop granularity int¢
considerations. The experiments have been performed on : : ruli) : :
a SMP Linux system with 4 identical Itanium CPU’s. The Example 1 Example 2
back-end Intel compiler accepts OpenMP directives [7] t¢ ——————— =

generate light-weighted threads. A code region is indi s] o

cated as parallel by a directive pat$omp parallel o :
andc$omp end parallel . Nested outermost DOALL “
loops are coalesced into a single parallel loop. Barrier syr]
chronization is only necessary at the borders of the péj'
tition sets P1/P2 and P2/P3, directicdomp end do .
nowait is used between the DOALL nests thataregen- . . = .. . L e |
erated from a fully parallel set. The speedup is given as the
ratio between the original sequential execution time and the
multi-threads execution time where environment variable Figure 3. Measured speedups.
OMPNUMTHREADSspecifies the number of CPU used.
The four examples are subjected to the partitioning meth-

ods are shown i_n figure 3. For Example 1 with parame- 56 first ysed to test for parallel loops, then the Omega test
ters N1=300, N2=1000, the PL [9], PDM [27] and REC is used for those loops with non-zero columns in the PDM.

;peedups are compared. The RE.C speedup is better thaﬂ/olf et al [24] extend the uniform distance vectorsde-
linear when the number of threads is smaller than 3 because

. X T pendence vectorse., each element of the dependence vec-
array subscripts calculations are simplified in the recurrence

. . tor is either a constant or a direction sign. Both distance and
WHILE loop. However, it drops below linear when number .~ .)
: direction vectors are treated in the same framework of de-
of threads is larger than 3 because the loop bounds calcu- d This lead | lleli
lation gets more overhead. For Example 2 with parameterpen ence vectors. This leads to outermost loop paralieliza-
N=300, the UNIQUE [11] aﬁd REC speeduns are compared tion as well as innermost loop parallelization by unimodular
The Both outperforms linear s eedpwhenpexecuted gn Sin'_transformations. For non-uniform dependences, however,
y P bee X the direction vector representation introduces more artifi-
gle CPU because the convex loop index calculations are op-_. _; . : T
e cial distance vectors than dependence uniformization: it is
timized by Omega calculator. REC outperforms UNIQUE ival he basis of th do di
because it generates shorter sequence of fully parallel recauva entto useh_t ﬁ a3|sho t evr$ctr?rspacke asdpseu 0” ol

. . tance vectors which may have a higher rank and a smaller
gions. For Example 3 with parameti&=300, speedups of 4 9

the REC partitioning, inner loop J, K parallelization [25], determinant than the PDM derived from distance vectors.

and the DOACROSS parallelization [6] are compared. REC An glgonthm in [24] can find a legal unimodular traqsfor
; o mation that reduces the outermost columns of a distance
performs the best because it has least synchronizations. For__. . ; ;
: matrix to zero. However, this algorithm can not be used for
Example 4 with parameteldMAE250, M4, N=40 and ; , .
NRHS3, PDM [27] and REC dataflow partitioning speedu the pseudo distance matrix because the unimodular trans-
' e P gsp P formation found are not always legal when there are non-
results are shown. REC partitioning outperforms PDM and

. . uniform dependences.
even linear program when nthread is smaller than three be- P

cause of the loop bounds optimization by Omega calcula-Sh.ang et al [26] rgpr_esent the nqn-u_niform distancgs asan
tor. When the number of threads is larger than 3, however,afflne (non-negativdinear) combination of the basic de-

the simpler PDM partitioning performs better because it has pen_d_ence vect0r§ (BDV), which are not lexicographically
better load balance. positive. The Basic Ideas | and Ill generate a set of full-rank

BDV which inhibits parallelizing the outermost loops by a
5. Related work unimodular transformation, while the Basic Idea Il searches
To test loop parallelism for non-uniform dependences, the for a set ofcone-optimaBDV, i.e., the BDV are minimal in
range tes{5] is based on intersection of the value range of rank. Because the lexicographical positiveness is not car-
non-linear expressions to mark a loop parallel for an empty ried by the BDV, an additionalinear scheduling[10] is
range. Since the dependence range is less exact, our recupeeded to maintain the lexicographical order.
rence chain partitioning uses tlamegatest [17] to solve Tzen et al [23] and Chen et al [6] implement the BDV

Example 3 Example 4

the dependence relation based on exact integer program-
ming. The zero columns of pseudo distance matrix (PDM)

linear scheduling by DO-ACROSS loops synchroniza- [4] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Auto-

tion. DOACROSS loops allow the iterations to be asyn- matic program parallelizationProc. of the IEEE81(2):211-243,

S i Feb 1993.
ChronOUSIy egecgted within a del_ay' which is enforced by [5] W.Blume and R. Eigenmann. The Range test: a dependence test for
P/V synchronization on the loop index. DOACROSS syn- symbolic, non-linear expressions. Roceedings, Supercomputing
chronization is more complex than the barrier synchroniza- '94, pages 528-537. I[EEE, 1994.

; ; ; ; [6] D. Chen and P. Yew. On the effective execution of nonuniform
tion of DOALL loops. Though no parallelism is obtained DOACROSS loopsTPDS 7(5):463-476, May 1996

using PDM partitioning for their example shown in exam- (7] p. Clark. OpenMP: A parallel standard for the mas<&EE Con-

ple 3, two perfectly nested DOALL loops can be obtained currency 6(1):10-12, JAN-MAR 1998.

using recurrence chain partitioning. [8] E.D’Hollander, F. Zhang, and Q. Wang. The Fortran parallel trans-
. . former and its programming environmenitournal of Information

Punyamurtula et al [19] propose the minimum distance Sciences106:293-317, 1998,

tiling that runs the adjacent iterations in parallel as long [9] E.H.D'Hollander. Partitioning and labeling of loops by unimodular
as their distance is smaller than the minimum dependence , gagsfor{liatiogsTPDSFf_3(4)1:165|—:}76, Jtult%]992f-f_ hedui)

. . . . Th . Feautrier. some etricient solutions to the arfine scheauling prob-
dISt"_’mceSj After maklng the mm”:num dlstapces t"mg of lem. I. One-dimensional timénternational Journal of Parallel Pro-
the iteration space, Tzen or Chen’s method is used for the gramming 21(5):313-347, Oct 1992.

inter-tile dependences. This method creates innermost par-[11] J.Juand V. Chaudhary. Unique sets oriented parallelization of loops

allelism whereas PDM partitioning creates outermost paral- ‘é"gg r‘l‘gg;’”iform dependencethe Computer Journah0(6):322—
lelism. Theoretically, it S_peedUpS Example 2 by 4 fumes. [12] W. Kelly and W. Pugh. Minimizing communication while preserv-
Ju et al [11] propose unique-set oriented partitioning to ex- ing parallelism. InSupercomputing’9ages 52—-60. ACM, 1996.

ploit exact non-uniform dependences: The dependence con-[13] W- Kelly, W. Pugh, and E. Rosser. Code generation for multiple

- . .) mappings. InThe 5th Symposium on the Frontiers of Massively
vex hulls are separated into head or tail sets by lexicograph Parallel Computation1995.

ical order. The first recurrence equation is called “flow” [14] X.Kong, D. Klappholz, and K. Psarris. The I-test - an improved de-

and the second is called “anti”, which Split the head or tail pendence test for automatic parallelization and vectorizafiBmS

P H f ; 2(3):342-349, jul 1991.
sets. The mtgrsggﬂons among the (head’ baIUIOW’anU) . [15] A.W.Limand M. S. Lam. Maximizing parallelism and minimizing
sets yield 5 'r!dN'dual cases. _The me_thOd also applies synchronization with affine partitionsParallel Computing 24(3-
only to one pair of subscripts with non-singuldr B ma- 4):445-475, May 1998.

trices, otherwise their coefficients calculation will divide by ~[16] D- A. Padua and M. J. Wolfe. Advanced compilers optimizations
for supercomputersCACM, 29(12):1184-1201, Dec 1986.

zero. Using their approac_:h on.ExampIe 2,5 perfectly nested [17] p . Petersen and D. A. Padua. Static and dynamic evaluation
DOALL loops were obtained in sequence [11]p.334. The of data dependence analysis techniqug®D$s 7(11):1121-1132,

number of iterations is not 144 due to apparent errors in the Nov 1996.

[18] W. Pugh. A practical algorithm for exact array dependence analysis.
loop bounds of the 3rd and 4th loop nests. We recalculated CACM 35(8):102-114. Aug 1992.

the example with their method and found that two of the [19] S. Punyamurtula, V. Chaudhary, J. Ju, and S. Roy. Compile
5 unique sets can not be written as perfectly nested Ioops time partitioning of nested loop iteration spaces with non-uniform

because they are not convex sets. Among the five unique dependences.Journal of Parallel Algorithms and Applications
13(1):113-141, Jan. 1999.

sets, the third one is sequential. Whereas applying the re- [20] L.Rauchwerger, N. M. Amato, and D. A. Padua. A scalable method

currence chain partitioning, only 3 fully parallel partitions for run-time loop parallelizationinternational Journal of Parallel

are obtained, resulting in more parallelism. Programming 23(6):537-576, 1995.

6. Conclusion [21] z. Shen, Z. Li, an_d_P.-C. Yev_v. An empirical study of Fortran pro-
" L. grams for parallelizing compilerS.PDS 1(3):356—-364, July 1990.

This paper presents a partitioning schemes, based on recur{2,] Jj. subhiok and K. Kennedy. Integer programming for array sub-

rence chains, to find outermost parallelism for loops with script analysisTPDS 6(6):662—668, June 1995.

non-uniform dependences. Comparing to the previously (23] T. Tzen and L. Ni. Dependence uniformization: A loop paralleliza-
di d do distance matrix (PDM) method [271. re- tion technique TPDS 4:547-558, May 1993.
IScovered pseudo ais () [] [24] M. E. Wolf and M. S. Lam. A loop transformation theory and an

currence chains partitioning is an enhancement when the algorithm to maximize parallelisnTPDS 2(4):452-471, Oct 1991.
loops has a single pair of coupled subscripts or with sym- [25] M. Wolfe and C. Tseng. The POWER test for data dependence.

. . - TPDS 3(5):591-601, sep 1992.
bolic affine bounds. When the |00p has non-linear bounds [26] W.Shang, E.Hodzic, and Z.Chen. On uniformization of affine de-

and multiple pairs of coupled subscripts, PDM can still be pendence algorithm$EEE Trans. Computerd’5(7):827—40, 1996.
applied. The advantage of REC lies in the dataflow parti- [27] Y. Yu and E. D'Hollander. Partitioning loops with variable depen-

P i dence distances. ICPP’00, pages 209-218. IEEE, Aug 2000.
tioning for non-uniform dependences. [28] Y. Yu and E. D’Hollander. Loop parallelization using the 3D itera-

References tion space visualizedournal of Visual Languages and Computing
[1] R. Allen and K. Kennedy. Automatic translation of Fortran pro- 12(2):163-181, April 2001.
grams to vector formTOPLAS 9(4):491-542, Oct 1987. [29] C.-Q. Zhu and P.-C. Yew. A scheme to enforce data dependence on
[2] U. Banerjee. Unimodular transformations of double loopsAth large multiprocessor systemESE 13(6):726—-739, Jun 1987. _
vances in Languages and Compilers for Parallel Computing, 1990 [30] H. Zima, H. Bast, and M. Gerndt. SUPERB - a tool for semi-
Workshop pages 192219, Aug. 1990. automatic MIMD SIMD parallelization. Parallel Computing
[3] U. Banerjee.Loop transformations for restructuring compilers: the 6(1):1-18, Jan 1988.

foundations Kluwer Academic, 1993. 305 p.

