ABSTRACT
In this paper, we describe a case study of computer-supported collaborative learning in design using FM (FlashMeeting), a Web-based video-conferencing tool offered freely on OpenLearn. This 6-week experiment, involving Open University students and staff, aimed to explore the capabilities of FM software to support several phases of the design process including formulating a design brief, discovering user requirements, setting design specifications, concept generation, design embodiment and implementation of proposed concepts. We conclude this paper with lessons learned from using FM in a design e-learning project.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Collaborative learning, Distance learning.

General Terms
Design, Experimentation

Keywords
FM, Computer-Supported Design Learning, Open University

1. INTRODUCTION
The Open University, UK (OU) was established in 1969 to promote and develop distance learning for students with great diversity in education, background, professions and age and who cannot commit to full time study. The Open University offers a unique structure to teaching and learning. Students receive course materials that they study and discuss with their local tutors and small peer groups, through face-to-face, telephone or online discussion forums.

The Design group at the Open University offers several short (100 hour) and full credit (600 hour) courses, including a second level course: ‘Design and designing’ and a third level course: ‘Innovation: designing for a sustainable future’. Together the courses lead to a Diploma in Design [3] [4]. The development of a new first level 600-hour ‘Design Thinking’ course (U101) will eventually lead to a degree award in design. Such an award opens up the opportunity to improve learners’ engagement and experiences in distributed design education.

The second and third level design courses consist of printed course materials that study and discuss with their local tutors and small peer groups, through face-to-face, telephone or online discussion forums. The material is mainly studied linearly, with the exception of supplementary worksheets that focus on the development of students’ practical design skills in parallel to the course text.

The course production teams’ efforts for the new first level ‘Design Thinking’ course concentrate on the exploitation and further development of the University’s Virtual Learning Environment (VLE) to support a non-linear learning experience. In this model, which aims to better reflect design practice, learners not only develop design skills and knowledge but create and co-create design artefacts both individually and with fellow students.

The Web 2.0 resources provided by OpenLearn (http://www.open.ac.uk/openlearn), the OU’s Open Content Initiative, offer a unique opportunity for highlighting non-linear, collaborative and interdisciplinary design learning. These resources include FM, a browser-based application using the Adobe Flash plug-in and Flash Media Server [5] that was developed by The Knowledge Media Institute (KMI) at the OU and is freely available on OpenLearn. This synchronous communication software comprises video chat, text chat, voting and whiteboard functions among others.

This paper reports on the utilisation of FM software in a design learning experiment that was part of a broader piece of research in the area of engagement with Open Educational Resources [1]. One of the objectives of this research has been to explore ways in which OpenLearn can contribute to course development at the OU by providing a platform for experimentation and trial of new ideas [2].

2. CASE STUDY

2.1 Setting
Initially 6 students, 2 Associate Lecturers (tutors) plus 2 ‘observers’ enrolled in the experiment. A senior design lecturer acted as group moderator. The student participants were drawn from the current second level design course so had some familiarity with design processes. The aim was to use FM to collaboratively design a sustainable domestic product. A design brief, project outline and asynchronous message board discussions were also accessible via the Online Design Studio.
Participants preferred receiving individual emails instead of (accomplished by closing the browser window). Many confusion about FM usability, such as logging out speaking time was confusing. Students expressed additional feature of raising the hand and cuing up for an allocation of the next speaker, voting, whiteboard use, were tested.

Participants varied in their perception of ease of use of FM. The test included features that varied in complexity, such as controlling volume, muting, and recording sessions. The results showed that most students found the software intuitive to use, but some had difficulty with the technical aspects.

Deliverables were a graphic presentation and a 200-word explanation of the proposed design outlining its key features and identifying how it addresses the requirements that have been identified. The task was structured into 6 group discussions that were held for one hour once a week. Students and tutors also conducted some independent research on each topic in advance to present to the group in the following meeting.

A project outline was set up, and meetings were scheduled in a series of 1-hour sessions:
- Technical familiarisation and FM help
- Session 1: The Design Brief
- Session 2: Understanding the Market and Users
- Session 3: A Design Specification
- Session 4: Concept Generation
- Session 5: Embodiment and Detail Design

3. OBSERVATIONS
The observations are grouped into 3 categories:
- Organisational aspects (OA), such as availability and training/instruction;
- Pedagogic aspects (PA): such as briefing, structure, and scaffolding;
- Interaction aspect (IA): such as engagement of students/tutors with tool and modes of interaction.

3.1 Technology Familiarisation
Before the technology familiarisation meeting, webcams were sent out and installed by the participants in their homes. Students and staff were asked to create an account on OpenLearn, enrol on the project, write an introduction about themselves and post it in the Online Design Studio OpenLearn space. The studio space contained links to each FM session.

OA: The initial session allowed students to become familiar with the technology and special features of FM. All 11 participants were present plus one technical advisor. First, hardware (camera and microphone) problems were surveyed. Features of FM and LabSpace were explored/explained.

IA: FM functionalities, such as “raising hands” to join the cue to be the next speaker, voting, whiteboard use, were tested. Participants varied in their perception of ease of use of FM. The feature of raising the hand and cuing up for an allocation of speaking time was confusing. Students expressed additional confusion about FM usability, such as logging out (accomplished by closing the browser window). Many participants preferred receiving individual emails instead of reading messages only on the LabSpace forum for preparing for following meetings.

PA: Students reported after the first technology familiarisation session that ice-breaking exercises and introductions were insufficient. This stumbling block was made up for in the next session where the design brief was discussed.

3.2 Project Briefing Session
OA: 3 tutors and 3 observers, but only 5 students participated in this first design session. No whiteboard was offered in this session.

DA: The first design session proper began with an introduction to the collaborators background and expectations of this project. Most participants joined this experiment out of curiosity about group design work in distance learning. Most participants had design or engineering related professions and, as noted above, they are also part-time students of OU’s second level design course. One student expressed some concerns about distributed synchronous collaboration arguing that “it puts one on the spot for immediate response or action” and “it gives less time and space for reflection”. Others had fewer concerns.

The group moderator shortly introduced the scope of the design project. He stressed that this project should not focus on any preconceived design solution. Instead, collaborative ways of problem finding as well as evolving creative alternative solutions should be explored. Next, the moderator initiated a discussion about interpretations and ideas around the topic of sustainable energy generation and reuse. The discussion was similar to a brainstorming exercise and was summarised by the moderator. During the closure of this session, negotiations about what should be done in preparation for the next meeting were held. While the moderator intended to leave those decisions to the students, students expected the moderator to tell them exactly what to do. This contradiction reoccurs frequently in design education settings (distributed or colocated). While students expect strict guidance and frequent feedback from tutors, tutors expect self-directed learning and taking of responsibility for design decisions. Tutors often encourage students that there is no right or wrong decision in early design stages. All possibilities should be kept in mind. Problem finding in design requires an open mind-set and initiative from all collaborators. However, students can expect orchestrated interaction in learning environments. Determining an appropriate level of scaffolding in design learning remains a controversial topic.

IA: Thumbnail video images were perceived as too small when the whiteboard tool was added to the meeting. An interesting observation was the use of the replay feature in FM. Although each collaboration session was recorded and could be replayed by all participants, the moderator took notes of the meetings independently. These assisted moderation but one student asked for those summaries, so that he didn’t have to replay the entire recorded session. It might be that the recording and replay function serves an important function to inform participants who miss a session [4]. However, this was not clearly observed in this experiment.

3.3 Understanding the Market and Users
OA: Session 1 ended with a distribution of voluntary tasks including researching ways of utilising human generated power. The scope and direction of research task was left open. The session moderator changed in this session, 2 tutors and 2 observers were present.
PA: Students completed some research before the second FM session. One student presented an example of a human powered roundabout toy that pumps up water from a well when children play with it. He uploaded a jpg picture to the whiteboard. Others explained verbally what they found or input links into the chat field. All findings confirmed that human power couldn’t generate much energy. More alternative ideas were presented. Students felt overwhelmed by the wide variety of ideas offered and wished to focus down on one idea, which was less technologically focused, because they felt they were not knowledgeable enough to judge the breadth of those ideas. After this tutors encouraged the group to vote on favorite ideas so that a design brief could be formulated. However, students felt they had too little information to make a decision on which direction the project should go. One student, who had some clear ideas, felt that he would not like to take the lead, because that was a tutor’s role. Tutors, on the other hand, wanted students to reach a group decision. Meta discussions about the perception of differing aims of students and tutors evolved in this experiment. Difficulties of negotiating a common design aim in video chat were discussed.

Participant feedback at this stage refers to an ‘intimidating medium’. There was some consensus that FM was difficult to handle for participants who are new to the medium as well as new to this particular design topic. A tutor suggested following a simpler design idea, so there was less pressure on the participants. More ideas were generated and compared to earlier ideas but no consensus could be gained. Participants wanted to focus on reducing the energy need to provide blanket public street lighting. Everyone agreed to look into this area and refine the brief on his or her own through research into market and sponsorships, which everyone agreed on. He also distributed some drawings to be shown to companies and other potential sponsors, which everyone agreed on. He also distributed some work done offline to fuel the final discussion. In the perception of the tutors, this session also went well. The reason behind this was assumed to be growing familiarity with the medium was observable.

3.5 Concept Generation

QA: There were 3 tutors and 3 students in session 4. The moderator from the first two sessions returned.

PA: He first congratulated the group on the process and felt pleased about the collaborative negotiation of the direction of the design project, which he thought was one aim of this experiment. He commented on the brief composed in the previous session and asked for a review of initial ideas that met the brief. A lively and wide-ranging discussion ensued, including experiences of street lighting, examples of existing renewable energies and also technologies used to light road signs or street furniture (Figure 3).

3.4 A Design Specification

An alternative idea emerged regarding the use of collected rainwater to power low voltage lights. This reconnected to an earlier idea using a playground to pump up water from the ground by children. While the idea may not have been commercially viable it potentially had value as an education demonstrator - perhaps sponsored by a local organisation for schools to visit. The moderator suggested producing a concept drawing to be shown to companies and other potential sponsors, which everyone agreed on. He also distributed some work done offline to fuel the final discussion. In the perception of the tutors, this session also went well. The reason behind this was assumed to be growing familiarity by all participants with
the functionality of the medium. Another reason might be the

IA: Between bouts of idea generation, a structuring meta-
discussion was initiated by the moderator addressing the use of
the whiteboard, such as colour of font etc. He appointed a
person to act as ‘page keeper’ to save versions of a whiteboard
so other participants were free to concentrate on the creative
concept development. They were then available to be re-loaded
onto the whiteboard. An option to save previous whiteboard
uploads would have been helpful. Images on the whiteboard
could be worked into, for example with annotation.

3.6 Embodiment and Detail Design

OA: In the final design session, only one student was available
to participate in the meeting. Tutors and observers had to
become more active design participants. A short discussion
about the organisation of the project arose at the end of the
session. Over the sessions, it became apparent that the schedule
was difficult to keep to. Students would have preferred to go on
and implement this idea in further sessions. One student
commented that “we seem to have settled in an area…but we
are…too close to the end of this to really explore, which is a
pity as the exploring bit is where this medium does seem to
work”. Students were also critical of the openness of the task.
Much of the early sessions were spent defining the precise
problem to look into. Time for developing this concept further
was then limited. Students suggested focusing on solving a
clearly defined design brief (but how representative of ‘design
is this?’). But it might better create the feeling of having
achieved something tangible and rewarding within a short time
of collaboration. The organisers were convinced that this was a
realistic design brief and the frustrations were typical of
resolving realistic complex design problems. Tutors tried not to
prescribe directions and spoon-feed students but deliberately
left the directions for this project open for exploration and
creative play.

PA: Subsequent to the concept generation the project gained a
real-life context. One tutor knew of a NGO (A UK wildlife
centre) that might be interested in the concept devised by the
team. The moderator suggested developing the design concept
so as to meet the particular requirements and constraints of this
particular NGO. Since, this NGO frequently invites children to
their venue, the possibility for this concept to become an
‘interactive learning centre’ was the focus of the remaining
discussion. Learning incentives and the utilisation of the energy
generated by children’s play were discussed. The concept could
contribute much to raising children’s awareness of renewable
ergy. Sketches done offline were uploaded, which
communicated initial ideas better than sketching directly on the
whiteboard. Related projects were discussed, too. Next, the
moderator guided participants through all parts and stages of a
possible concept that composed a system of various ways of
saving and generating energy and educating children about
these mechanisms. Other details were discussed. The discussion
was lively and the concept gained depth. The moderator asked
every participant as final homework to compose a visual
representation of a system with annotations that could be
offered to this NGO.

IA: All participants were proficient using the FM system.
Uploading pictures of sketches was frequently used. Impromptu
sketches on the whiteboard were seldom attempted because
detailed implementations are more difficult to illustrate on the
whiteboard.

4. LESSONS LEARNT
From an organizational point of view, we learnt that great care
should be taken when changing project leader/moderator over
the project. In addition, other tutors should be trained for the
moderator’s role. We should allow for at least 2-3 hours of
training to become proficient in using the medium. The demand
of time for all concerned (especially considering the time put in
outside of the FM meetings) needs to be made clear to all
participants upfront. We experienced great variation in prior
level of design skills and knowledge. Where possible levels of
participant expertise should be matched.

From a pedagogical perspective, we noted that we only
achieved flowing discussions in the later sessions. We need to
apply better icebreaker and introduction sessions to warm up
participants and allow them get to know each other. In addition,
participants’ roles and responsibilities were perceived
ambiguously. Hence leadership and authority issues arose in
subsequent sessions. Establishing a clear pedagogical model for
design learning might be useful to avoid such confusions.

Considering the interaction aspect, we learnt that we could
utilize the FM medium for exploratory discussions and
brainstorming supported by visual aids. Summing up ideas
discretely and using the whiteboard to note down ideas to make
them available for further use was especially successful in this
experiment. However it offered less support when detailed
design implementations were needed. The whiteboard seems to
be more a scribble tool than a drafting tool but its value for
uploading pre-made images was well liked. Switching between
different communication forms such as video chat, text chat and
use of whiteboard disrupted the flow of the conversation in the
beginning. However, after participants became more familiar
with features, the multi-modality of FM seemed to support the
flow of conversation. More research is needed to fully
understand how the multi-modality of FM can be utilized in such
learning contexts.

These findings will be taken into consideration when
developing new courses in distance design learning, such as in
U101 Design Thinking. It’s clear that more work needs to be
done if we are to facilitate peer learning and collaboration, and
see the establishment of an online design studio culture.

5. ACKNOWLEDGMENTS

Our thanks to T211 tutors and students, and KMI FM
researchers who supported and participated in this experiment.
We are also grateful to the OU Centre for Open Learning of
Maths, Computing, Science and Technology (COLMSCT) and
OpenLearn for their support to this work.

6. REFERENCES

[1] Ferreira, G. ‘New spaces, new tools, new roles: two case-
studies on the impact of Open Educational Resources’ To

[2] Ferreira, G. ‘On the impact of open educational resources:
two case-studies’. In P. McAndrew (ed.) OpenLearn
http://kn.open.ac.uk/document.cfm?documentid=11600

development at the Open University’. In Proceedings of
Crossing Design Boundaries, the Engineering and
Product Design Education conference (E&PDE05). Eds.,
Rogers, P., Broadhurst L., & Hepburn D., Taylor Francis,