The Open UniversitySkip to content

A hybrid generative/discriminative framework to train a semantic parser from an un-annotated corpus

Zhou, Deyu and He, Yulan (2008). A hybrid generative/discriminative framework to train a semantic parser from an un-annotated corpus. In: The 22nd International Conference on Computational Linguistics (COLING 2008), 18-22 Aug 2008, Manchester.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (645kB)
Google Scholar: Look up in Google Scholar


We propose a hybrid generative/discriminative framework for semantic parsing which combines the hidden vector state (HVS) model and the hidden Markov support vector machines (HMSVMs). The HVS model is an extension of the basic discrete Markov model in which context is encoded as a stack-oriented state vector. The HM-SVMs combine the advantages of the hidden Markov models and the support vector machines. By employing a modified K-means clustering method, a small set of most representative sentences can be automatically selected from an un-annotated corpus. These sentences together with their abstract annotations are used to train an HVS model which could be subsequently applied on the whole corpus to generate semantic parsing results. The most confident semantic parsing results are selected to generate a fully-annotated corpus which is used to train the HM-SVMs. The proposed framework has been tested on the DARPA Communicator Data. Experimental results show that an improvement over the baseline HVS parser has been observed using the hybrid framework. When compared with the HM-SVMs trained from the fully annotated corpus, the hybrid framework gave a comparable performance with only a small set of lightly annotated sentences.

Item Type: Conference or Workshop Item
Copyright Holders: 2008 The Coling 2008 Organizing Committee
Extra Information: 22nd International Conference on Computational Linguistics, Proceedings of the Conference. Vol.1. Stroudsburg, PA: Association for Computational Linguistics (ACL), 2008.
ISBN 978-1-905593-44-6.
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Knowledge Media Institute (KMi)
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Research Group: Centre for Research in Computing (CRC)
Item ID: 23790
Depositing User: Kay Dave
Date Deposited: 16 Nov 2010 10:48
Last Modified: 08 Dec 2018 15:56
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU