
Open Research Online
The Open University’s repository of research publications
and other research outputs

Modularization: a key for the dynamic selection of
relevant knowledge components
Conference or Workshop Item
How to cite:

d’Aquin, Mathieu; Sabou, Marta and Motta, Enrico (2006). Modularization: a key for the dynamic selection
of relevant knowledge components. In: 1st International Workshop on Modular Ontologies, WoMO’06, 5 Nov 2006,
Athens, Georgia, USA.

For guidance on citations see FAQs.

c© 2006 The Authors

Version: Version of Record

Link(s) to article on publisher’s website:
http://www.cild.iastate.edu/events/womo.html

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://www.cild.iastate.edu/events/womo.html
http://oro.open.ac.uk/policies.html


Modularization: a Key for the Dynamic
Selection of Relevant Knowledge Components

Mathieu d’Aquin, Marta Sabou, and Enrico Motta

Knowledge Media Institute (KMi)
The Open University, Milton Keynes, United Kingdom

{m.daquin, r.m.sabou, e.motta}@open.ac.uk

Abstract. Ontology selection is crucial to support knowledge reuse on
the ever increasing Semantic Web. However, applications that rely on
reusing existing knowledge often require only relevant parts of existing
ontologies rather than entire ontologies. In this paper we investigate how
modularization can be integrated with ontology selection techniques. Our
contribution is twofold. On the one hand we extend a selection tech-
nique with a modularization component. On the other hand we design
and implement a modularization algorithm which, unlike many existing
approaches, is tightly integrated in a concrete tool.
Keywords: ontology modularization, ontology selection

1 Introduction

The accelerated growth of the Semantic Web in the last years has the potential to
cause a paradigm shift in the way that Semantic Web applications are developed.
Indeed, the trend is to migrate from knowledge base like applications relying on
a single ontology chosen at design time, towards tools that harvest collective
intelligence by dynamically integrating online available knowledge [1, 2].

To facilitate knowledge reuse in such a scenario, tools supporting the dynamic
selection of reusable knowledge components are crucial. Indeed, what is essential
for applications that aim to reuse online knowledge is not so much obtaining
one or several ontologies from the Web, but rather getting the relevant piece of
knowledge to be used for the task they are performing. This requirement becomes
evident when taking into account that several large ontologies are available online
(e.g., SUMO), and that, due to their broad domain coverage, they are likely
to be often selected. Unfortunately, existing selection techniques return entire
ontologies that satisfy criteria like the coverage of a set of query terms and do
not consider a more fine grained selection of knowledge [3].

A solution to this problem is to extend selection techniques with modulariza-
tion capabilities. As such, we are migrating from monolithic ontology selection
towards selecting bits of relevant knowledge. Throughout the paper we use the
term knowledge selection to refer to this process that integrates ontology se-
lection with modularization for retrieving relevant ontology modules. While a
variety of modularization techniques exist (see recent surveys in [4, 5]), a gen-
eral characteristic is that these techniques have been developed independently



of the needs of concrete applications. As a consequence, most modularization
techniques have been poorly evaluated.

In this paper we investigate using modularization in the concrete scenario of
knowledge selection. There are two novel aspects of this work. First, from the
perspective of ontology selection, we propose a more fine grained selection of
online knowledge. The second aspect, which is the focus of this paper, is that
of adapting existing modularization techniques in a concrete scenario that al-
lows their proper evaluation. We propose a modularization algorithm which is
based on the traversal paradigm, requires no user interaction, poses no assump-
tions on the ontologies that can be modularized and relies on inferences during
the modularization process. Note that the novelty of this algorithm is not so
much the actual method that it uses but rather the way in which it satisfies the
requirements imposed by our application.

We start by better defining the problem at hand, i.e., providing a more
fine grained knowledge selection (Section 2). In Section 3, we overview existing
modularization techniques and characterize them from several perspectives that
hint on their suitability for being integrated with other applications. Then, based
on this view, we identify a set of requirements that a modularization technique
should fulfill in the context of selection (Section 4). Our observations are used
as design principles for building our algorithm, defined in Section 5. In Section 6
we discuss preliminary experimental results and conclude with a discussion and
future work.

2 From Ontology Selection to Dynamic Knowledge
Selection

The goal of this section is to better define the scenario of dynamic knowledge
selection and to justify the need for modularization. To ground our analysis,
we start by describing a concrete tool that relies on dynamic knowledge selec-
tion (Section 2.1). Then, we abstract a generic schema for performing dynamic
knowledge selection (Section 2.2) that allows to better understand the role of
the modularization algorithm in the whole process.

2.1 Magpie: a Scenario for Dynamic Knowledge Selection

Magpie [6] is a Semantic Web browser which helps users to quickly make sense of
the information provided by a Web page by allowing them to visually access the
semantic data associated with that page. Available as a browser plugin in which a
set of concepts are displayed (e.g., Researcher, Technology), Magpie can identify
instances of these concepts in the current Web page and highlight them with
the color associated to each concept. Core to Magpie is an instantiated ontology
that contains the information needed to identify the relevant instances in Web
pages. Magpie can be easily adapted to work with any ontology. The user simply
needs to select an ontology from a list of known ontologies. However, Magpie



can only explore one ontology at a time, meaning that the scope of the sense
making is limited to the domain described by that ontology.

In our current work we are extending Magpie towards open semantic browsing
in which the tool automatically selects and combines online ontologies and their
associated metadata relevant to the content of the current page. As such, the user
is relieved from manually choosing a suitable ontology every time he wishes to
browse new content. Such an extension of our tool relies on mechanisms that can
not only dynamically select appropriate ontologies from the Web, but can also
extract from these ontologies the relevant and useful parts to describe concepts
and instances in the current Web page.

Concretely, given a Web page, Magpie requires a concise domain model that
describes the most important concepts and instances in this page. To achieve
this, in a first step, a relevant set of terms describing the Web page (keywords)
are extracted by using text processing methods. Then, given these terms, a
selection method would dynamically (i.e., while the tool is used by the user
rather than during the design of the tool) select and retrieve the appropriate
piece of knowledge from ontologies available on the Web. The size of the returned
ontology module is crucial since Magpie only needs relevant parts of ontologies,
small enough to be visualized within the browser and to be easily interpreted
by the user in relation with the current Web page. In the next subsection we
describe the generic design of a dynamic knowledge selection system and discuss
the role of modularization in this system.

2.2 Dynamic Knowledge Selection

Taking a step back from the concrete Magpie scenario, at a generic level, we
expect that a knowledge selection algorithm receives a set of terms and returns
an ontology that is usable within an application.

Our previous work and experiences in ontology selection [7] made it clear that
modularization may play a crucial role in complementing the current selection
techniques. Indeed, selection algorithms tend to run into two major problems.
First, if the selection returns a large ontology this is virtually useless for a tool
such as Magpie which only visualises a relatively small number of concepts at a
time. Unfortunately, in the experiments we have performed large ontologies are
often returned (especially WordNet). What is needed instead is that the selection
process returns a part (module) of the ontology that defines the relevant set of
terms. A second problem relates to the fact that in many cases it is difficult to find
a single ontology that covers all terms (we observed this knowledge sparseness
phenomenon in [7] and our current systematic experiments in this direction
confirm our initial intuitions). However, a combination of one or more ontologies
could cover all the query terms. This problem is related to modularization in
the sense that it is easier to combine small and focused knowledge modules than
ontologies of large size and coverage.

These considerations justify the need to extend selection techniques with
modularization capabilities. In Figure 1 we depict the three major generic steps



Fig. 1. The knowledge selection process and its use for semantic browsing with Magpie.

of the knowledge selection process that integrates ontology selection, modular-
ization and merging.

1. Selection of relevant ontologies. In a first step, given a set of terms for
which an ontology is required, the selection technique identifies online ontolo-
gies or sets of ontologies that cover the given query terms. By coverage we
mean that the identified ontologies contain concepts, properties or instances
that are semantically related to the query terms. The selection algorithm
has been detailed in [7] and is currently being implemented.

2. Modularization of the selected ontologies. Given the ontologies discov-
ered in the previous step, a modularization technique is applied on each on-
tology to identify a module in the ontology that contains relevant knowledge
for the query terms that were mapped into that ontology. The design and
implementation of this modularization technique is the focus of this paper.

3. Merging of the relevant ontology modules. Finally, in the case when
the query terms are covered by several different ontologies, the separate
modules extracted from each individual ontology need to be merged in a
meaningful way to form the final result of the selection. The merging algo-
rithm will be built after the selection and modularization parts are finalized.

As shown by the above description, modularization is tightly integrated in
the selection process. Before providing a suitable algorithm we wish to find out
which are the concrete requirements that are imposed on the modularization
part by this tight integration in the context of another process. In preparation
to define these requirements we performed a survey of modularization techniques.

3 A Survey of Ontology Modularization Techniques

The objective of this section is to analyze existing modularization approaches
in order to evaluate which of them has the potential to be integrated in our
knowledge selection process. The two modularization surveys that we are aware
of analyze the field from perspectives that are not suitable for our purpose. The



survey in [4] takes a broad view by considering modularization as the process
used to obtain modular ontologies both from existing ontologies and when de-
signing a new ontology. Our focus is narrower, as we are interested in extracting
modules from existing and potentially large scale ontologies. The survey in [5]
is focused towards comparing existing methods to the approach presented by
that paper and therefore it is too narrow for our needs. We start our analysis by
briefly describing a set of modularization systems according to the three major
approaches that they rely on (Section 3.1). In Section 3.2 we define a set of
characteristics that define different aspects of modularization and then analyze
the techniques described in Section 3.1 from this perspective.

3.1 Modularization Systems

The survey in [5] distinguishes three main categories of modularization ap-
proaches based on the technique that is used: query based methods, network
partitioning, and extraction by traversal.

Query based methods obtain ontology modules as answers to queries writ-
ten in a SQL-like query language (e.g., SparQL, RQL). Due to their inspiration
drawn from the view mechanism in databases, most of these approaches result
in a virtual view. They don’t actually extract a proper ontology module, i.e.
a materialized and self-contained piece of ontology. These characteristics make
this set of techniques inappropriate for our scenario.

Network partitioning based methods consider ontologies as graphs and
exploit graph partitioning algorithms to extract structurally relevant modules.
In [8], the authors present a method for dividing ontologies into several partitions
using an algorithm from network analysis. A dependency graph is first computed
between the ontology elements, and these elements are clustered on the basis
of criteria like intra and inter-connectivity. [9] considers the partitioning of a
knowledge base for improving the scalability of theorem proving. A graph is
built on the co-occurrence of symbols in the axioms of a logical theory, and tree-
decomposition algorithms are used on this graph to generate tightly connected
clusters of symbols. The created modules are then used in a so-called partition-
based theorem proving mechanism, exploiting the distribution of the knowledge
in multiple modules.

Traversal based modularization methods start from one or several ele-
ments of the ontology (concepts, properties, or individuals), and include in the
module the concepts, properties and individuals that are (generally syntactically)
linked to these elements. For example, the system described in [10] extracts a
part of the ontology around a given concept, by recursively following the concept
properties until a given distance is reached. [5] also starts from a concept of the
ontology and extracts related elements on the basis of concept subsumption and
OWL restrictions. Some optional filters can be used to reduce the size of the
generated module. In [11], modules are extracted from an ontology with respect
to the user requirements. These requirements are expressed by labels indicating
for each ontology element whether or not it must be selected. In [12], the author
defines a viewpoint as being a sub-part of an ontology that only contains the



knowledge concerning a given sub-vocabulary (a set of concept and property
names). The computation of a viewpoint is based on the definition of a view-
point dependent subsumption relation. Finally, [13] does not entirely comply
with the traversal paradigm, except that it relies on the ontology structure. It
gives a formal approach for creating modular ontologies from OWL ontologies,
on the basis of ε-Connections. The presented method is based on the computa-
tion of the so-called structural compatibility and semantic compatibility between
the original ontology and the generated ε-Connections.

3.2 Characteristics of Modularization Systems

In this section we define a set of characteristics that allow a more fine-grained
analysis of modularization techniques than it has been done by existing surveys.
In particular, we are interested in aspects that denote how these techniques
could be integrated within other systems or processes. This should allow us to
evaluate their usefulness for knowledge selection as well as to derive concrete
requirements for knowledge selection. We consider the following characteristics:

Modularization criteria denote the characteristics that the resulting modules
should fulfill, such as, coverage of a sub-vocabulary, reduced size.

Assumptions on the ontology denote the assumptions that the modulariza-
tion techniques rely on, such as, complying to a certain representation lan-
guage, providing a certain level of quality or axiomatization.

Level of user interaction describes the user involvement in the modulariza-
tion process, and can range from no actions required by from the users, to the
user interacting with the system by adding new requirements or fine-tuning
some variables.

Taking inferences into account refers to the modularization process using
inference mechanisms or providing modules that can be reasoned upon.

Use of modules refers to the ways modules are used after being obtained. We
distinguish two aspects here: 1) the process of combining modules and 2) the
use and evaluation of modules in concrete applications.

Modularization criteria. The criteria of modularization often depend on
the purpose of the modularization, for example, to enhance reusability and scala-
bility. The goal of the work in [9] is to distribute the theorem proving mechanism
among several knowledge partitions in order to improve its scalability. There-
fore, these partitions have to be loosely coupled and highly cohesive. In traversal
approaches such as [5, 10, 12], the goal is to facilitate the reuse and the inter-
pretation of the knowledge contained in the ontology. The resulting modules are
required both to cover a given sub-vocabulary and to have an appropriate size.

Assumptions on the ontology. Most of the existing approaches rely on
some assumptions. For example, those described in [13] and [5] are explicitly
made to work on OWL ontologies, whereas [8] can be used either on RDF or
OWL but only exploits RDF features. In [5], the ontology is required to be well-
designed and to use complex OWL constructs to describe concepts. Moreover,



some of the filters used to reduce the size of a module are dependent on elements
of the Galen upper ontology.

Level of user interaction. In many systems the required user entries are
limited to the inputs of the algorithm. In certain cases, some numerical pa-
rameters can be required [8] or some additional procedures can be manually
(de)activated [5]. The technique in [10] has been integrated in the Protégé
ontology editor to support knowledge reuse during the building of a new ontol-
ogy. In this case, modularization is an interactive process where the user has the
possibility to extend the current module by choosing a new starting point for
the traversal algorithm among the boundary concepts of the module.

Taking inferences into account. Several systems are designed to allow
reasoning with the created modules and so exhibit some interesting properties
concerning inferences. For example, [13] and [9] both guarantee that the entail-
ments of the original ontology are also entailed by the set of extracted modules,
and vice-versa. To our knowledge, none of the considered techniques are relying
on inference mechanisms during the modularization process.

Use of modules. Regarding the first aspect of this criteria, that of com-
bining the resulting modules, most approaches materialize a module as a self-
contained ontology [5, 10, 12]. Several papers mention formal properties that al-
low the combination (e.g., union, intersection) of the modules of a particular
ontology [10, 12], but none of these papers are considering the combination of
modules coming from different ontologies. Regarding the aspect of actually using
modules in other applications, we only know of two approaches that make their
modules available to reasoners/theorem provers (but not to any other applica-
tions). The modules extracted in [13] are linked together using ε-Connections and
aim at being used in a reasoner. In a similar way, the knowledge base partitions
created by the approache of [9] are used in a dedicated theorem prover.

4 Modularization Requirements

While existing modularization approaches are agnostic to the needs of applica-
tions, as is shown in our survey, our goal is to define a modularization mechanism
that fulfills the requirements and constraints imposed by a particular application,
i.e., dynamic and automatized knowledge selection, and a particular scenario for
this application, i.e., semantic browsing with Magpie (cf. Section 2). In this sec-
tion we elaborate on these requirements which are established in terms of the
characteristics described in Section 3.2.

R1. Modularization criteria reflect selection criteria. As explained in
Section 2, ontology modularization is tightly integrated with ontology selection
and its goal is to reduce the selected ontology to the relevant sub-part(s). As a
result the criteria for the modularization of an ontology directly depend on the
criteria that have lead to the selection of that ontology.

In our semantic browsing scenario, the knowledge selection process should
retrieve ontology modules that are related to a given Web page. Keywords are
extracted from this page and ontologies are selected according to their relevance



to these terms. The result of the ontology selection is a set of mappings from
the initial terms to elements (concepts, properties or individuals) of the selected
ontology (see [7] for a detailed description of the ontology selection mechanism).
Therefore, the goal of the modularization process is to extract from the ontology
the smallest piece of knowledge related to and covering the mapped elements.

R2. No assumption on the ontology. The goal of our knowledge selection
process is to retrieve relevant knowledge components from ontologies available on
the Web. Online available ontologies are heterogeneous in several aspects: they
can be expressed in different representation languages (OWL, RDFS, DAML),
they can have different quality (ranging from well-designed DL-based ontologies
such as Galen to simple taxonomies), and different size. In the knowledge selec-
tion scenario it is impossible to impose any assumptions on the characteristics
of the input ontology.

R3. Minimal user interaction. Depending on the envisaged application
scenario, the modularization mechanism may require different levels of user inter-
action. In our semantic browsing scenario, and in general for knowledge selection,
we cannot expect the user to know anything concerning the selected ontology or
about the mechanism used to extract relevant knowledge.

R4: Ensure output covers both relevant explicit and implicit knowl-
edge. One of the advantages of semantic metadata is that it can be reasoned
upon and implicit knowledge can be derived. However, a side effect of modular-
ization is that one might exclude parts of the ontology that could lead to deriving
such implicit knowledge. Ideally, the knowledge entailed by the selected ontology
should also be contained in the extracted module. The method presented in [5]
tries to fulfill this criterion by including all related ontology elements to the
concepts that have to be covered by the module. However, this strategy leads to
including a lot of extra information and obtaining large sized modules.

Summary

Table 1 summaries the correspondences between the four requirements expressed
above and the systems surveyed in Section 3. Network partitioning approaches
(as well as the system presented in [13]) score low on fulfilling the first require-
ment because they consider modularization from a general perspective and do
not incorporate criteria such as those used by the selection algorithm. In [5],
some strong assumptions are made about the input ontology that cannot be
guaranteed in an open scenario like the one of knowledge selection. Considering
that our goal is to achieve a fully automatized knowledge selection, interactive
processes like the one detailed in [10] cannot be envisaged. Finally, unlike the
system in [12], it is important to take into account the inferences that can be
drawn from the considered ontology in order to extract explicit as well as implicit
relevant knowledge.

The first, obvious conclusion of this analysis is that the modularization mech-
anism for knowledge selection should be based on a traversal approach. However,
it also shows that these techniques cannot be directly reused, because they do
not completely match all our requirements. Therefore, we designed an algorithm



Requirements Network Traversal
[8] [9] [5] [10] [11] [12] [13]

Rely on the selection criteria (R1.) 0 0 1 2 2 2 0

No assumptions on ontology(R2.) 1 0 0 3 2 3 1

Minimal user interaction (R3.) 2 3 2 0 3 3 3

Using inference (R4.) 1 3 3 0 0 0 3

Table 1. Overview of modularization approaches and the level to which they match
our requirements. (0: no, 1: weak, 2: good, 3: complete).

inspired from some of these approaches (especially [5], [10] and [12]), and adapt-
ing it to the needs of dynamic knowledge selection.

5 Modularization Algorithm

In this section we propose a modularization algorithm dedicated to dynamic
knowledge selection, i.e. designed to fulfill the previously defined requirements.
It is a fully automatized process relying on a reasoner to extract implicit (i.e.
inferred) knowledge and taking into account different levels of description, from
simple taxonomies to complex knowledge representation structures. We first in-
troduce the notations used to denote ontologies and their elements, detail the
algorithm itself, and finally discuss some of its characteristics with respect to
our requirements.

5.1 Notations

An ontology O contains a set C(O) of concepts, a set P (O) of properties, a set
I(O) of individuals, and a set A(O) of assertions, relating elements of C(O), P (O)
and I(O). Assertions can either be axioms, introducing concepts and properties,
or facts, introducing individuals. For examples, a concept inclusion axiom C v D
indicates that the concept C is a sub-concept of D, C(a) is a fact indicating that
the individual a is an instance of a concept C, and p(a, b) is a fact indicating
that the property p relates the individuals a and b.

A concept can either be described by its name or by an expression using
constructs like restrictions (∃p.C, ∀p.C), conjunctions (C u D), etc. In this paper,
concept expressions are written using the description logic syntax.

The most common inference mechanism in OWL is the subsumption test. It
consists in checking if a concept C is a sub-concept of another concept D. We
use O |= C v D to denote that it can be inferred from the ontology O that C is
subsumed by D, i.e. that C is a sub-concept of D. In general, this notation can be
used with any assertion. For example, O |= C(a) means that it can be inferred
that a is an instance of C.

The modularization mechanism presented here is designed to be integrated
in a knowledge selection process, as described in Section 2. Its goal is to extract
the part of the ontology O that is related to the terms that have lead to the



selection of O. Therefore, the input of this algorithm is the ontology O, and a
sub-vocabulary SV of O that the extracted module should cover. SV is described
by a set C(SV ) ⊆ C(O) of concept names, a set P (SV ) ⊆ P (O) of property
names, and a set I(SV ) ⊆ C(O) of individual names.

The following description of the modularization algorithm is illustrated on
a toy example using the ontology presented in Figure 2(a). In this ontology,
Samantha is described as being a woman (i.e., a person of the female sex) who
has a child named Tabatha. A parent is a person having at least a child. A mother
is a parent and a woman. We are interested in extracting from this ontology
the knowledge concerning Samantha and the concept of mother. Therefore, the
sub-vocabulary SV used as an input for the algorithm is: C(SV ) = {Mother},
P (SV ) = ∅, and I(SV ) = {samantha}.

(a) (b)

Fig. 2. The original ontology (a) and the resulting module (b).

The result of the modularization process is a module M , supposed to be a
reusable and self-contained piece of knowledge related to SV . M is then described
in a similar way as the ontology O, by a set C(M) ⊆ C(O) of concepts, a
set P (M) ⊆ P (O) of properties, a set I(M) ⊆ I(O) of individuals, and a set
A(M) ⊆ A(O) of assertions.

5.2 Details of the Algorithm

The actual modularization algorithm consists in computing C(M), P (M), I(M)
and A(M) recursively, in a fix-point like algorithm. The following definitions
clarify which concepts, properties, instances and assertions should be included.
The overall idea is to include in the module the elements that SV relates, either
directly or indirectly, explicitly or implicitly.

C(M), the set of concepts to be contained by the module, corresponds to the
set of concepts in O that are used to define elements of the sub-vocabulary SV ,
or that relate other concepts of C(M) in the ontology hierarchy (i.e. they are
the most specific common super-concepts of other concepts in C(M)).



Definition 1. C(M) contains a concept C iff:

c1. C is a concept name and C ∈ C(SV ) or
c2. C is a concept name and it can be inferred that C is the most specific common

super-concept of two concepts in C(M)1

c3. C is a concept name and it can be inferred that C is the most specific concept
of an individual in I(M) or

c4. C is a concept expression and there is a concept D ∈ C(M) such that O |=
D v C or

c5. there exists a concept D ∈ C(M) such that D is a concept expression of one
of the following forms: ∃p.C, ∀p.C, C u E, C t E or ¬C

In our example, the Mother concept is included because it is in SV (c1.), but
also because it can be inferred that samantha is an instance of Mother and so
that Mother is its most specific concept (c3.). The c4. part of the definition leads
to the inclusion of the expressions ∃hasChild.Child and ∃hasSex.{female}, in-
herited by Mother from the definitions of Woman and Parent. Note that, to avoid
obtaining a large module, the Woman and Parent concepts themselves are not
included explicitly, though their definitions are inherited by Mother. Then, be-
cause of the c5. part, Child is included in the module, as well as Person that is
the most specific super-concept of Child and Mother (c2.).

Similarly, a property is included in P (M) if it is used to define an element
of SV , or if it is the most specific super-property of other properties in P (M).

Definition 2. P (M) contains a property p iff:

p1. p ∈ P (SV ) or
p2. it can be inferred that p is the most specific common super-property of two

properties in P (M) or
p3. O |= p(a, b) and a ∈ I(M) or
p4. there exists a concept C ∈ C(M) such that C is a concept expression of one

of the following forms: ∃p.D, ∀p.D, ∃p.{a}, ≤n p, ≥n p or =n p

In our example ontology, only the hasChild and hasSex properties are kept for
the module: they are used in the previously included concept expressions (p4.)
and samantha relates to other individuals using these properties (p3.).

Following the definition of C(M) and P (M), I(M) should include any indi-
vidual of O that is used to describe elements of SV , even if indirectly.

Definition 3. I(M) contains an individual a iff:

i1. a ∈ I(SV ) or
i2. O |= p(b, a) and b ∈ I(M) or

1 More precisely, among the concept names that are super-concepts of both of these
two concepts in the ontology hierarchy, C is one of the most specific. This can be
easily computed on the basis of the subsumption test provided by a reasoner.



i3. there exists a concept C ∈ C(M) such that C is a concept expression of the
form {a, . . .}

Three individuals are included in the result of our example modularization:
samantha because it is in SV (i1.), tabatha because it is related to samantha
by the hasChild property (i2.), and female because it is used in an included
concept expression (i3.).

Finally, the relations between elements of the module that are known in
the ontology must be kept in the module. This means that A(M) contains the
assertions that can be inferred from O and that link elements of M . For example,
C v D ∈ A(M) if and only if O |= C v D, C ∈ C(M), and D ∈ C(M).

Definition 4. A(M) contains an assertion A iff O |= A and A relates elements
of C(M), P (M) or I(M).

The assertions of A(M) then re-build all the links between concepts, properties
and individuals of the module, as shown in Figure 2(b). Note that A(M) can be
computed at the end since it does not influence any other definition.

5.3 Characteristics of the Algorithm and of the Resulting Modules

The first requirement in Section 4 states that the modularization criterion is
based on the criterion for selection, meaning that the resulting module should
be the smallest part of the ontology that covers the terms used during the on-
tology selection. Following the traversal approach, our algorithm recursively in-
spects the ontology expressions to include the elements that participate to the
definition of these terms. Unlike the algorithm in [5], all the super-concepts of a
selected concept are not necessarily included (only the ones that directly relate
concepts of the module, i.e. the most specific common concepts). We only keep
the required structure and remove from the hierarchy the intermediary concepts
that do not participate to the semantic definition of the considered terms.

The second requirement emphasizes that no assumptions should be made
regarding ontology types. For this reason, the definitions on which the algo-
rithm relies are made of different parts, taking into account different levels of
description: the algorithm can work with the simplest ontologies but can also
explore complex structures in expressive representation languages when they are
available. In the current implementation, we consider only the RDFS and OWL
formalisms but since these are the most common ontology languages for the
Semantic Web, this choice is not too restrictive. Moreover, this modularization
process is in itself modular in the sense that parts of the definitions can easily
be added, removed or replaced to optimize it for a particular kind of ontology,
or to match the requirements of other scenarios.

To fulfill the requirement of having no user interaction, we base our modu-
larization solely on inputs that can be provided by the selection mechanism that
proceeds it. Finally, according to our fourth requirement, the extracted module



should not only include the elements that explicitly (i.e. syntactically) partici-
pate to the definition of the input terms, but also elements that are implicitly
related by the mean of inferences. We fulfill this requirement by relying on in-
ferences during the modularization process. For example, in Definition 2, the
p3. part may rely on declared as well as inferred relations between individuals.
Accordingly, an interesting property of our algorithm is that anything that can
be entailed from the original ontology concerning the relations between elements
of the input sub-vocabulary can still be entailed from the module. This property
may be particularly interesting in applications where modularization is used to
reason about the terms of the sub-vocabulary.

6 Discussion

The proposed algorithm has been implemented in Java, using the Jena API2.
This program can be tuned for different levels of inference support, from the
simplest rule based mechanism provided by Jena, to complete description logic
reasoning using the Pellet OWL reasoner3. During implementation we have
monitored the performance of the algorithm on a large medical ontology (about
4000 concepts) from the OpenGalen project4. For example, when interested in
describing a piece of text about lung cancer, we observed that 1) only a part
of this big ontology is concerned with cancer and 2) the Cancer concept and
the Lung concept are described in different and distant parts of the concept
hierarchy, making the visualization and interpretation of this knowledge diffi-
cult. Using our algorithm with a sub-vocabulary containing the terms “cancer”,
“lung”, “adenocarcinoma” and “breath”5, we obtained a concise, focused and
self-contained ontology module of about 50 named concepts. This encouraging
result demonstrated that the modularization can be interfaced with the selection
algorithm and use the same selection criteria.

The aim of this paper was to identified the requirements of dynamic knowl-
edge selection regarding modularization, to analyze how existing modulariza-
tion approaches can contribute in fulfilling these requirements, and to derive
an algorithm dedicated to this particular task. This has led to the design and
implementation of a modularization tool inspired from state-of-the-art traversal
approaches. As a next step, this tool will be integrated with an ontology selec-
tion mechanism and a similar study will be realized concerning the merging part
of our process. Moreover, a proper evaluation should be conducted to estimate
the quality of our modularization with respect to knowledge selection, as well
as in other applications. We believe that the quality of a module, its usefulness,
is highly dependent on the scenario in which the modularization is integrated.
Existing modularization techniques are based on diverse principles and rely on

2 http://jena.sourceforge.net/
3 http://www.mindswap.org/2003/pellet/
4 http://www.co-ode.org/ontologies/test/breaksmetrics.owl
5 extracted from the keywords of a web page concerning lung cancer



different assumptions. Therefore, the evaluation and comparison of modulariza-
tion techniques are rather difficult tasks that require a proper framework, in
the form of a benchmark. The design of such an evaluation process, including
criteria for evaluating the relevance of diverse modularization techniques with
respect to different usage scenarios will be considered as future work.

Acknowledgements

This work was funded by the Advanced Knowledge Technologies (AKT) Inter-
disciplinary Research Collaboration (IRC), sponsored by the UK Engineering
and Physical Sciences Research Council and the Open Knowledge and NeOn
projects sponsored by the European Commission as part of the Information So-
ciety Technologies (IST) programme.

References

1. Motta, E., Sabou, M.: Next Generation Semantic Web Applications. In: Proc. of
the 1st Asian Semantic Web Conference (ASWC). (2006)

2. Motta, E., Sabou, M.: Language Technologies and the Evolution of the Semantic
Web. In: Proc. of the 5th International Conference on Language Resources and
Evaluation (LREC). (2006)

3. Sabou, M., Lopez, V., Motta, E., Uren, V.: Ontology Selection: Ontology Evalua-
tion on the Real Semantic Web. In: Proc. of the 4th International EON Workshop.
(2006)

4. (coordinator) Spaccapieta, S.: Report on Modularization of Ontologies. Knowledge
Web Deliverable 2.1.3.1 (2005)

5. Seidenberg, J., Rector, A.: Web Ontology Segmentation: Analysis, Classification
and Use. In: Proc. of the World Wide Web Conference (WWW). (2006)

6. Dzbor, M., Domingue, J., Motta, E.: Magpie - towards a semantic web browser.
In: Proc. of the Second International Semantic Web Conference (ISWC). (2003)

7. M. Sabou, V.L., Motta, E.: Ontology Selection on the Real Semantic Web: How
to Cover the Queens Birthday Dinner? In: Proc. of the European Knowledge
Acquisition Workshop (EKAW), Podebrady, Czech Republic (2006)

8. Stuckenschmidt, J., Klein, M.: Structure-Based Partitioning of of Large Concept
Hierarchies. In: Proc. of the International Semantic Web Conference (ISWC).
(2004)

9. MacCartney, B., McIlraith, S., Amir, E., Uribe, T.: Practical Partition-Based
Theorem Proving for Large Knowledge Bases. In: Proc. of the International Joint
Conference on Artificial Intelligence (IJCAI). (2003)

10. Noy, N., Musen, M.: Specifying Ontology Views by Traversal. In: Proc. of the
International Semantic Web Conference (ISWC). (2004)

11. Bhatt, M., Flahive, A., Wouters, C., Rahayu, W., Taniar, D., Dillon, T.: A Dis-
tributed Approach to Sub-Ontology Extraction. In: Proc. of the 18th International
Conference on Advanced Information Networking and Applications (AINA). (2004)

12. Stuckenschmidt, H.: Toward Multi-Viewpoint Reasoning with OWL Ontologies.
In: Proc. of the European Semantic Web Conference (ESWC). (2006)

13. Grau, B., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic Partitioning of OWL
Ontologies Using ε-Connections. In: Proc. of Description Logic Workshop (DL).
(2005)


