Image retrieval using Markov Random Fields and global image features

How to cite:

For guidance on citations see FAQs.

© 2010 Association for Computing Machinery

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/10.1145/1816041.1816078

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page.
ABSTRACT

In this paper, we propose a direct image retrieval framework based on Markov Random Fields (MRFs) that exploits the semantic context dependencies of the image. The novelty of our approach lies in the use of different kernels in our non-parametric density estimation together with the utilisation of configurations that explore semantic relationships among concepts at the same time as low-level features, instead of just focusing on correlation between image features like in previous formulations. Hence, we introduce several configurations and study which one achieve the best performance. Results are presented for two datasets, the usual benchmark Corel 5k and the collection proposed by the 2009 edition of the ImageCLEF campaign. We observe that, using MRFs, performance increases significantly depending on the kernel used in the density estimation for the two datasets. With respect to the the language model, best results are obtained for the configuration that exploits dependencies between words together with dependencies between words and visual features. For the Corel 5k dataset, our best result corresponds to a mean average precision of 0.32, which compares favourably with the highest value ever obtained, 0.35, achieved by Makadia et al. [22] albeit with different features. For the ImageCLEF09 collection, we obtained 0.32, as mean average precision.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval; I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Object Recognition

General Terms
Algorithms, Design, Experimentation

Keywords
Markov processes, Nonparametric statistics

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

CIVR ’10, July 5-7, Xi’an China
Copyright ©2010 ACM 978-1-4503-0117-6/10/07 ...$10.00.

1. INTRODUCTION

Automated image annotation refers to the process of learning statistical models from a training set of pre-annotated images in order to generate annotations for unseen images using visual feature extracting technology. This can be formulated in two ways, as direct image retrieval or as image annotation itself. Despite the fact that the work presented in this paper refers to direct retrieval, we discuss previous work done under both formulations.

The problem of modelling annotated images has been addressed from several directions in the literature. Initially, a set of generic algorithms were developed with the aim of exploiting the dependencies between image features and implicitly between words. However, many algorithms do not explicitly exploit the correlation between words. With respect to the deployed machine learning method, we can consider: co-occurrence models of low-level image features and words [26]; machine translation methods that translate image regions into words in the same way as words from French might be translated into English [6]; relevance models CRM [16], CMRM [12], and MBRM [10]; inference networks that connect image segments with words [24]; non-parametric density estimation [34]; supervised learning models [3, 4]; information-theoretic semantic indexing [21]; and [22] show that a proper selection of features could lead to very good results for a k-nearest neighbours algorithm.

The human understanding of a scene was a topic confronted by many researchers in the past. Authors like Biederman [1], and then, Torralba and Oliva [32] supported the hypothesis that objects and their containing scenes were not independent. For example, the prediction of the concept “beach” is usually followed by the presence of “water” and “sand”. On the other hand, a “polar bear” should never appear in a “desert” scenario, no matter how high the probability of the prediction. As a result of this, a new collection of algorithms, devoted to exploring word-to-word correlations, shortly emerged. Thus, these methods relied on either filtering the results obtained by a previous baseline annotation method or on creating adequate language models as a way to boost the efficiency of previous approaches. In particular, some of them use co-occurrence information [19, 35]; others apply semantic measures to WordNet like [6, 17] or combine co-occurrence information with WordNet [18] and others build a concept hierarchy [29, 31] or use WordNet to induce hierarchies on annotation words [13]. However, the improvement in the performance obtained by word-to-word correlation methods built on top of individual concept detect-
Markov Random Fields (MRFs) provide a convenient way of modelling context-dependent entities like image content. This is achieved through characterizing mutual influences among such entities using conditional MRF distributions. The main benefit of using a MRF comes from the fact that we can model correlations between words explicitly. In this paper, we present a direct image retrieval framework that makes use of different configurations to model the image content. Besides that, the application of MRF theory allows us to easily formulate the joint distribution of the graph. The novelty of our approach lies in the use of different kernels, in our non-parametric density estimation, together with the utilisation of configurations that explore semantic relationships among concepts and low-level features instead of just focusing on correlation between image features like in previous formulations. Our focus is on the model and on obtaining a better kernel estimation. As Makadia et al. [22] show, a good choice of features can give very good results. Here our focus is not on the features. We use simple global features.

Tables 1 and 2 show comparative results for some of the previous approaches mentioned in Section 1 and in Section 2. However, we have only included those results obtained using the Corel 5k dataset (Section 4.1) and the evaluation measures considered in this paper (Section 4.3). Depending on the strategy adopted, direct retrieval or image annotation, the evaluation measures used are mean average precision (MAP) or the number of words with non-zero recall (NZR), precision (P), and recall (R). Section 2 discusses state-of-the-art automated image annotation algorithms. Section 3 introduces our Markov Random Field model. Section 4 explains the experiments undertaken, while Section 5 analyses our results. Finally, Section 6 explains the conclusions and plans for future work.

2. RELATED WORK

Markov Random Fields have been widely used in computer vision applications to model spatial relationships between pixels. Feng and Mannathu [9] were the first to do direct retrieval (without an intermediate annotation step) using a MRF model. By ranking while maximising average precision the model is simplified due to the fact that the normaliser does not need to be calculated. They used discrete image features and obtained comparable results to the state-of-the-art algorithms. Later on, Feng presented a similar model [8] but applied it to the case of continuous image features. He achieved better performance with the continuous model than with the discrete model although the latter was more efficient in terms of speed. Both models were based on the Markov Random Field framework developed by Metzler and Croft [23], who modelled term dependencies in text retrieval. The novelty of their approach lies in training the model that maximises directly the mean average precision instead of maximising the likelihood of the training data.

Escalante et al. [7] proposed a MRF model as part of their image annotation framework, which additionally uses word-to-word correlation. Hernandez-Gracidas and Sucar [11] carried out another variation of the previous approach placing emphasis on the spatial information relation among objects. Both works are based on the MRF model proposed by Car-bonetto et al. in [2], whose approach is considered to be out of the scope of this work as it is more aligned with the approaches usually adopted in the field of computer vision. More recently, Xiang et al. [33] presented a new approach able to perform directly automated image annotation. They adopt a MRF to model the context relationships among semantic concepts with keyword subgraphs generated from training sample for each keyword. Thus, they defined two potential functions in cliques up to order two: the site potential and the edge potential. The former models the joint probability of an image feature and a word and was modelled using the Multiple Bernoulli Relevance Model (MBRM) [10]. The edge potential approximates the joint probability of an image feature and a correlated word. The parameter estimation is done adopting a pseudo-likelihood scheme in order to avoid the evaluation of the partition function. Finally, they showed significant improvement over six previous approaches for the Corel 5k dataset.

In [28], Qi et al. follow a similar approach applying a MRF to video annotation. Their method, the Correlative Multi-Label (CML) framework, simultaneously classifies concepts while modelling the correlations between them in a single step. They conduct their experiments on TRECVID 2005 dataset outperforming several algorithms.

3. MARKOV RANDOM FIELDS

For the basic Markov Random Field model we followed the approach and the notation used by Feng [8]. Let G
be an undirected graph whose nodes are called I and Q. A Markov Random Field (MRF) is an undirected graph G which allows the joint distribution between its two nodes to be modelled in terms of:

$$P_A(I, Q) = \frac{1}{Z_A} \prod_{c \in C(G)} \psi(c; \Lambda),$$ \hspace{1cm} (1)

where $C(G)$ is the set of cliques defined in the graph G, $\psi(c; \Lambda)$ is a non-negative potential function over clique configurations parametrized by Λ, and Z_A is the value that normalised the distribution. When applied to the image retrieval case, the nodes of the graph, I and Q, represent respectively a image of the test set and a query. The image is represented by a set of feature vectors r and the query by a set of words w. Following the same reasoning as Feng in his continuous model developed in [8], we approximate the joint distribution using the following exponential form:

$$\psi(c; \Lambda) = e^{\lambda_c f(c)},$$ \hspace{1cm} (2)

Therefore, we arrive at the following model where images are ranked according to their posterior probability:

$$P_A(I|Q) \overset{\text{rank}}{=} \sum_{c \in C(G)} \lambda_c f(c),$$ \hspace{1cm} (3)

where $f(c)$ is a real-valued feature function defined over the clique c weighed by λ_c.

Figure 1 shows a graph representing the dependencies explored in our model. The left side of the image illustrates the clique configurations considered in this research which contemplates cliques of up to third order. A 2-clique (r-w) consisting of a query node w and a feature vector r, followed by a 2-clique (w-w') representing the dependencies between words w and w', and, finally, a 3-clique (r-w-w') capturing the relation between a feature vector r and two word nodes w and w'. According to the graph, the posterior probability is expressed as:

$$P_A(I|Q) \overset{\text{rank}}{=} \sum_{c \in T} \lambda_c f_T(c) + \sum_{c \in U} \lambda_v f_U(c) + \sum_{c \in V} \lambda_v f_V(c),$$ \hspace{1cm} (4)

where T is the set of 2-cliques containing a feature vector r and a query term w, U is the set of 2-clique (w-w') representing the dependencies between two words w and w' and V is the set of 3-cliques (r-w-w') capturing the relation between a feature vector r and two word nodes w and w'. Finally, and for simplicity, we make the assumption that all image features are independent of each other given some query Q.

The differences between this work and [8, 9] reside mainly in the divergent associations defined in our respective graphs. Both approaches investigate the dependencies between image regions and words (configuration r-w). However, their focus is on exploring the dependencies between various image regions while ours relies on the relationships between words. Thus, the rest of the configurations presented in this paper are new. Another differing point is that we work with feature vectors extracted from the entire image instead of with image regions. Additionally, both works differ on their selection of visual features. Finally, [8, 9] employ a Gaussian kernel in their density estimation while our strongest point is exploring additional kernels such as the “square-root” or the Laplacian kernel.

In what follows, we explain in detail the different configurations followed in this research.

3.1 Image-to-Word Dependencies

This configuration is formed by the set of 2-cliques r-w and it corresponds to the Full Independence Model developed by Feng in [8]. The potential function associated to this clique expresses the probability of generating the word w, for a given image feature, scaled by the prominence of the feature vector r in the test set image I, as shown in:

$$f_T(c) = P(w|r)P(r|I),$$ \hspace{1cm} (5)

where $P(r|I)$ is set to be the inverse of number of features vector per image, as we make the assumption that the distribution is uniform. $P(w|r)$ is estimated applying Bayes’ rule:

$$P(w|r) = \frac{P(w, r)}{\sum_{w'} P(w, r')},$$ \hspace{1cm} (6)

where $P(w, r)$ is computed in a similar way to the continuous relevance model (CRM) developed by Lavrenko et al. [15]:

$$P(w, r) = \sum_{J \in \tau} P(J) P(w|J) P(r|J),$$ \hspace{1cm} (7)

where τ represents the training set and J, a training image, and $P(J) \approx \frac{1}{T}$. The function $P(r|J)$ is estimated using a non-parametric density estimation approach as represented in:

$$P(r|J) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{|r - r_i|}{h} \right),$$ \hspace{1cm} (8)

where r is a real-valued image feature vector of dimension d, m is the number of feature vectors representing the image J, t is an index over the set of biagrams in J. We propose as kernel function a Generalized Gaussian Distribution [5] whose probability density function (pdf) is defined as:

$$\text{pdf}(x; \mu, \sigma, p) = \frac{1}{2\Gamma(1+1/p)} \exp \frac{-|x-\mu|^{p}}{A(p, \sigma)},$$ \hspace{1cm} (9)

where $x, \mu \in \mathbb{R}$, $p, \sigma > 0$ and $A(p, \sigma) = [\pi^{\frac{1}{p}}(1+1/p)^{\frac{1}{p}}]^{\frac{1}{p}}$. The parameter μ is the mean, the function $A(p, \sigma)$ is a scaling factor that allows the variance of x to take the value of σ^2, and p is the shape parameter that we will call norm. When $p = 1$, the pdf corresponds to a Laplacian or double exponential function and to a Gaussian when $p = 2$. Note that p can take any real value in $(0, \infty)$.

However, in this work, we will experiment with three types of kernels: a d-dimensional Laplacian kernel, which after simplification of Equation 9 yields:

$$k_L(t; h) = \frac{1}{\prod_{i=1}^{d} 2\pi h_i} e^{-\frac{|t|^2}{\prod_{i=1}^{d} h_i}},$$ \hspace{1cm} (10)

a Gaussian kernel, expressed as:

$$k_G(t; h) = \frac{1}{\prod_{i=1}^{d} \sqrt{2\pi h_i}} e^{-\frac{|t|^2 \prod_{i=1}^{d} h_i^2}{2}},$$ \hspace{1cm} (11)

and the “square-root” kernel ($p=0.5$):

$$k_{SQ}(t; h) = \frac{1}{\prod_{i=1}^{d} 2\pi h_i} e^{-\frac{|t|^2}{\prod_{i=1}^{d} h_i}},$$ \hspace{1cm} (12)

245
where \(t = r - r_i \), and \(h_k \) is the bandwidth of the kernel, which is set by scaling the sample standard deviation of feature component \(l \) by the same constant scale (sc).

Finally, \(P(w,J) \) is modelled using the same multinomial distribution as [15]:

\[
P(w,J) = \lambda_1 \frac{N_{w,J}}{N} + (1 - \lambda_1) \frac{N_w}{N}. \tag{13}
\]

\(N_{w,J} \) represents the number of times \(w \) appears in the annotation of \(J \), \(N_J \) is the length of the annotation, \(N_w \) is the number of times \(w \) occurs in the training set and \(N \) is the aggregate length of all training annotations. \(\lambda_1 \) is the smoothing parameter and together with the coefficient that scales the kernel bandwidth represents the two parameters that are estimated empirically using a held-out portion of the training set.

3.2 Word-to-Word Dependencies

The 2-clique \(w-w' \) models word-to-word correlation and is approximated by the following potential function:

\[
f_{w}(c) = \gamma f((w, w')) = \gamma \sum_{w'} P(w|w'), \tag{14}
\]

\[
P(w|w') = \frac{P(w, w')}{P(w')} = \frac{\#(w, w')}{\sum_{w'} \#(w, w')}, \tag{15}
\]

where \(\#(w, w') \) denotes the number of times the word \(w \) co-occurs together with the word \(w' \) annotating an image of the training set. To avoid the problem of the sparseness of the data, we follow a smoothing approach:

\[
P(w|w') = \beta \frac{\#(w, w')}{\sum_{w} \#(w, w') + (1 - \beta) \sum_{w} \sum_{w'} \#(w, w')}, \tag{16}
\]

where \(\beta \) is the smoothing parameter.

3.3 Word-to-Word-to-Image Dependencies

The model consists of 3-cliques formed by the words, \(w \) and \(w' \) and the feature vector \(r \), and captures the dependencies among them. The underlying idea behind this model is that a feature vector representing two visual concepts should imply a degree of compatibility between the visual information and the concepts, and between the concepts themselves.

This compatibility is measured by the potential function. For instance, assume that we have a marine scene representing a portion of the sea and a boat, the visual features should reflect the visual properties of the boat and the sea regarding colour and texture and, at the same time, the concepts “sea” and “boat” should pose a degree of semantic relatedness as both represent objects that share the same image context. Thus, the potential function over the 3-clique \(r-w-w' \) can be expressed as:

\[
\lambda_r f_r(c) = \delta f((w, w'), r), \tag{17}
\]

where \(\delta \) is the weight of the potential function. This can be formulated as the possibility of predicting the pair of words \((w, w')\) given the feature vector \(r \), weighted by the importance of the vector in the image \(I \):

\[
f((w, w'), r) = P((w, w')|r)P(r|I), \tag{18}
\]

where \(P(r|I) \approx \frac{1}{|I|} \), and \(|I|\) is set to the number of feature vectors that represent a test image. By applying Bayes formula and the continuous relevance model (CRM) developed by Lavrenko et al. [15] but adapted to \(P((w, w'), r) \), we have the following:

\[
P((w, w')|r) = \frac{\sum_{J \in I} P(J)(P((w, w')|J)P(r|J))}{\sum_{(w,w')} P((w, w'), r)}, \tag{19}
\]

where \(J \) refers to a training image, and \(r \) to the training set. The rest of the terms are computed as follows. \(P(J) \) is approximated by \(\frac{1}{|I|} \). \(P((w, w')|J) \) is estimated following a generalisation of a multinomial distribution [15] as seen in Section 3.3.1. Finally, \(P(r|J) \) is calculated following a Generalized Gaussian kernel estimation as in Equation 10, 11, and 12. In this model, we have three parameters: the smoothing parameter \(\lambda_{2,} \) of the multinomial distribution and two additional ones derived from the kernel estimation (scale sc, and \(\gamma \)) that are estimated during the training phase.

3.3.1 Multinomial Distribution of Pairs of Words

The multinomial distribution of pairs of words is modelled using the formula:

\[
P((w, w')|J) = \sum_{w'} \lambda_2 \frac{N_{w(w'), J}}{N} + (1 - \lambda_2) \frac{N(w, w')}{N}. \tag{20}
\]
The distribution measures the probability of generating the pair \(w \) and \(w' \), as annotation words, for the image \(I \) based on their relative frequency in the training set. Therefore, the first term reflects the preponderance of the pair of words \((w, w')\) in the image \(I \) whereas the second is added as smoothing factor and registers the behaviour of the pair in the whole training set. Thus, \(N(w, w')_J \) represents the number of times, zero or one, \((w, w')\) appears in the image \(I \), \(N_J \) is the number of pairs that could be formed in the image \(I \), \(N(w, w')_J \) is the number of times \((w, w')\) occurs in the whole training set, \(N = \sum_J N_J \), and \(\lambda_2 \) is the smoothing parameter.

For instance, when estimating the distribution of pairs of words formed by the term “tree” in an image annotated with the words “palm”, “sky”, “sun”, “tree” and, “water”, we should consider the weight of all pairs appearing in the image as well as in the rest of the training set:

\[
P((“tree”, w’)) = \left[\lambda_2 \frac{1}{10} + (1 - \lambda_2) \frac{221}{20,972} \right]_{\text{tree-sky}} + \left[\lambda_2 \frac{1}{10} + (1 - \lambda_2) \frac{23}{20,972} \right]_{\text{tree-sun}} + \left[\lambda_2 \frac{1}{10} + (1 - \lambda_2) \frac{143}{20,972} \right]_{\text{tree-water}} + \left[\lambda_2 \frac{1}{10} + (1 - \lambda_2) \frac{22}{20,972} \right]_{\text{tree-palm}} + \sum_{w'} \left(1 - \lambda_2 \right) \frac{N(w, w')_J}{20,972} \left. \right|_{\text{tree-w’.}}
\]

where \(w' \) represents the rest of vocabulary words that co-occur with “tree” in the rest of the training set, but not in \(I \). Additionally, \(m \) is an integer value that represents the number of words annotating an image \(I \), \(N_J \) is equal to \(\binom{m}{2} \), and \(N \) is a constant for a given collection, and it is set to 20,972 for the Corel 5k dataset. Even if there are images annotated by one single word or without annotations, \(P((w, w'))_I \) might be different from zero due to the contribution of the second factor in Equation 20.

4. EXPERIMENTAL WORK

For our experiments, we have adopted a standard annotation database, the Corel 5k dataset, which is a considered benchmark in the field. Additionally, we use the collection provided by the Photo Annotation Task of the 2009 edition of ImageCLEF campaign. The ImageCLEF concepts are very different from the Corel annotations and, hence, the features used should be different for the two datasets. We, however, use the same features for both datasets as the focus of this paper is not on the features. We expect our results to, therefore, not be as good for the ImageCLEF dataset but we would like to show the power of the model and kernel estimates. Note that, although we did not participate in that edition, we compare our results with the other participants in order to provide an estimation of our performance.

4.1 Dataset

The Corel 5k dataset was first used by Duygulu et al. [6] and is a collection of 5,000 images coming from 50 Corel Stock Photo CDs that comprises a training set of 4,500 images and a test set of 500 images. Images of the training set were annotated by human experts using a set of keywords ranging from three to five from a vocabulary of 374 terms.

ImageCLEF is an image retrieval track part of the Cross Language Evaluation Forum (CLEF) campaign. In particular, the Photo Annotation Task [27] is a subtask inside ImageCLEF. The collection provided is a subset of the MIR Flickr 25k dataset. It is made up of a training set of 5,000 images manually annotated with words coming from a vocabulary of 53 visual concepts, and a test set of 3,000 images. It is worth noting that, while most of the vocabulary concepts corresponds to visual concepts, there exist others that not only are not visual but also are highly subjective as “Aesthetic_Impression”, “Overall_Quality”, and “Fancy”.

4.2 Visual Features

The global visual features employed in this research correspond to a combination of 3x3 tiled marginal histogram of global CIELAB colour space computed across 2+2+2 bins, with a 3x3 tiled marginal histogram of Tamura texture across 2+2+2 bins with coherence of 6 and coarseness of 3, with a 3x3 tiled marginal histogram of global HSV colour space computed across 2+2+2 bins, and with a Gabor texture feature using six scales and four orientations.

CIE L*a*b* (CIELAB) is the most perceptually accurate colour space specified by the International Commission on Illumination (CIE). Its three coordinates represent the lightness of the colour (L*), its position between red/magenta and green (a*) and its position between yellow and blue (b*). The histogram was calculated over two bins for each coordinate. HSV is a cylindrical colour space with H (hue) being the angular, S (saturation) the radial and V (brightness) the height component. The H, S and V axes are subdivided linearly (rather than by geometric volume) into two bins each.

The Tamura texture feature is computed using three main texture features called “contrast”, “coarseness”, and “directionality”. Contrast aims to capture the dynamic range of grey levels in an image. Coarseness has a direct relationship to scale and repetition rates, and finally, directionality is a global property over a region. The histogram was calculated over two bins for each feature. The final feature extracted is a texture descriptor produced by applying a Gabor filter to enable filtering in the frequency and spatial domain. We applied to each image a bank of four orientation and six scale sensitive filters that map each image point to a point in the frequency domain.

The image is tiled in order to capture a better description of the distribution of features across the image. Afterwards, the features are combined to maintain the difference between images with, for instance, similar colour palettes but different spatial distribution across the image.

4.3 Evaluation Measures

In this research, we present our results under the rank retrieval metric which consists in ranking the images according to the posterior probability value \(\lambda_2(I|Q) \) as estimated in Equation 3. Then, retrieval performance is evaluated with the Mean Average Precision (MAP), which is the average precision, over all queries, at the ranks where recall changes where relevant items occur. For a given query, an image is considered relevant if its ground-truth annotation contains the query. For simplicity, we employ as queries single words. For the Corel5k dataset we use 260 single word queries and 53 for the ImageCLEF09; in both cases we use all the words.
that appear in the test set.

4.4 Model Training

The training was done by dividing the training set into
two parts: the training set and the validation or held-out
set. The validation test is used to find the parameters of
the model. After that, the training and validation set were
merged to form a new training set that helps us to predict
the annotations in the test set. For the Corel 5k dataset, we
partitioned the training set into 4,000 and 500 images. The
ImageCLEF09 was divided into 4,000 as training set, and
1,000 as held-out data.

Metzler and Croft [23] argued that, for text retrieval, max-
imising average precision rather than likelihood was more
appropriate. Feng and Mannmatha [9] showed that this ap-
proach worked for image retrieval and we also maximised
average precision. We followed a hill-climbing mean average
precision optimisation as explained in [25].

5. RESULTS AND DISCUSSION

We analyse the behaviour of three models obtained by
combining the clique configurations shown in Figure 1 for
the two datasets. In particular, we join the image-to-word
with the word-to-word model and investigate whether its
performance is higher than the image-to-word and the word-
to-word-to-image separately. We also explore the effect of
using different kernels in the non-parametric density esti-
mation. Finally, we study which combination of parameters
achieves the best performance. The parameters under con-
ideration depend on the selected language model.

Table 2: State-of-the-art of algorithms in direct im-
age retrieval expressed in terms of mean average
precision (MAP) for the Corel 5k dataset. Results
with an asterisk show that the number of words used
for the evaluation are 179, instead of the usual 260.
The first block corresponds to the classic probabilis-
tic models, the second illustrates models based on
Markov Random Fields, and the last shows our best perform-
ing results

<table>
<thead>
<tr>
<th>Model</th>
<th>Author</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMRM</td>
<td>Jeon et al. [12]</td>
<td>0.17*</td>
</tr>
<tr>
<td>CRM</td>
<td>Lawrenko et al. [16]</td>
<td>0.24*</td>
</tr>
<tr>
<td>CRM-Rect</td>
<td>Feng et al. [10]</td>
<td>0.26</td>
</tr>
<tr>
<td>LogRegL2</td>
<td>Magalhaes & Rüger [21]</td>
<td>0.28*</td>
</tr>
<tr>
<td>Npde</td>
<td>Yavlinsky et al. [34]</td>
<td>0.29*</td>
</tr>
<tr>
<td>MBRM</td>
<td>Feng et al. [10]</td>
<td>0.30</td>
</tr>
<tr>
<td>SML</td>
<td>Carneiro et al. [3]</td>
<td>0.31</td>
</tr>
<tr>
<td>JEC</td>
<td>Makadia et al. [22]</td>
<td>0.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Author</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete MRF</td>
<td>Feng & Mannmatha [9]</td>
<td>0.28</td>
</tr>
<tr>
<td>MRF-F1</td>
<td>Feng [8]</td>
<td>0.30</td>
</tr>
<tr>
<td>MRF-NRD-Exp1</td>
<td>Feng [8]</td>
<td>0.31</td>
</tr>
<tr>
<td>MRF-NRD-Exp2</td>
<td>Feng [8]</td>
<td>0.34</td>
</tr>
<tr>
<td>MRF-Lplcn-rw</td>
<td>sc=7.4, λ1=0.3</td>
<td>0.26</td>
</tr>
<tr>
<td>MRF-Lplcn-rw-ww’</td>
<td>sc=7.1, λ1=0.9, γ=0.1, β=0.1</td>
<td>0.27</td>
</tr>
<tr>
<td>MRF-Lplcn-rw’</td>
<td>sc=7.1, A2=0.7</td>
<td>0.27</td>
</tr>
<tr>
<td>MRF-SqRt-rw</td>
<td>sc=2, λ1=0.3</td>
<td>0.32</td>
</tr>
<tr>
<td>MRF-SqRt-rw-ww’</td>
<td>sc=2, A1=0.3, γ=0.1, β=0.1</td>
<td>0.32</td>
</tr>
<tr>
<td>MRF-SqRt-rw’</td>
<td>sc=1.8, A2=0.3</td>
<td>0.32</td>
</tr>
</tbody>
</table>

The name assigned to each of our models is made up of
three parts. The first refers to the fact that it is a MRF
model. The second applies to the kind of kernel consider-
ed: “Lplcn” for Laplacian, “Gsm” for Gaussian, and “SqRt”
for the “square-root” kernel. The third part corresponds to
the language model used: [-rw] refers to the image-to-word
model, [-ww’] to the word-to-word model, and [-rw’] to the
word-to-word-to-image model.

Our top results are represented in Table 2 for the Corel 5k
dataset, and in Table 5 for the ImageCLEF09 collection. In
Table 2, we have included other state-of-the-art algorithms
for comparison purposes.

The “square root” kernel provides the best results in any
configuration modelled for the two datasets. These results
are followed by the Laplacian kernel whereas the Gaussian
produces the lowest performance.

For the Corel 5k dataset, the best result corresponds to
the word-to-word-to-image configuration, with a MAP of
0.32, closely followed by the image-to-word model, and by
the combined image-to-word and word-to-word configura-
tion. The kernel used in the three cases corresponds to the
“square root”. This result outperforms previous probabilistic
methods, with the exception of the continuous MRF-NRD-
Exp2 model of Feng [8], and the JEC system proposed by
Makadia et al [22]. It is worth mentioning that the good
results obtained by Makadia et al. are due to their careful
use of visual features. Note that, the top 20 best per-
forming words, which are represented in Table 3, have an average
precision value of one. This means that the system is able
to annotate these words perfectly.

For the ImageCLEF09 collection, the best performance is
achieved by the image-to-word configuration. We consider
that this behaviour is very revealing as the correlation be-
tween concepts is very rare in the collection, because of the
nature of its vocabulary. Thus, as the correlation between
words does not provide any added value to the model, the
best performing is the image-to-word model, which detects
concepts only based on low-level features. The correspond-
ing MAP is of 0.32, which translated into the evaluation
measures followed by ImageCLEF competition yields EER
of 0.31 and AUC of 0.74. After comparing our results with
the rest of the algorithms submitted to the competition, we
are located in the position 21 (out of 74 algorithms). As
mentioned before our choice of features for ImageCLEF is
not optimal and with a better choice of features our model
is expected to do a lot better. Again, best results were ob-
tained using a “square root” kernel. Finally, we represent in

Table 3: Top 20 best performing words in Corel 5k
dataset ordered according to the columns

<table>
<thead>
<tr>
<th>Word</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>land</td>
<td>runway</td>
</tr>
<tr>
<td>flight</td>
<td>tails</td>
</tr>
<tr>
<td>crafts</td>
<td>festival</td>
</tr>
<tr>
<td>sails</td>
<td>relief</td>
</tr>
<tr>
<td>albatross</td>
<td>lizard</td>
</tr>
<tr>
<td>white-tailed</td>
<td>mule</td>
</tr>
<tr>
<td>mosque</td>
<td>sphinx</td>
</tr>
<tr>
<td>whales</td>
<td>man</td>
</tr>
<tr>
<td>outside</td>
<td>formula</td>
</tr>
<tr>
<td>calf</td>
<td>oahu</td>
</tr>
</tbody>
</table>
Table 4: Average Precision per Word for the top ten best performing words in ImageCLEF09

<table>
<thead>
<tr>
<th>Word</th>
<th>Avg. Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral_Illumination</td>
<td>0.97</td>
</tr>
<tr>
<td>No_Visual_Seaon</td>
<td>0.94</td>
</tr>
<tr>
<td>No_Blur</td>
<td>0.86</td>
</tr>
<tr>
<td>No_Persons</td>
<td>0.81</td>
</tr>
<tr>
<td>Sky</td>
<td>0.77</td>
</tr>
<tr>
<td>Outdoor</td>
<td>0.76</td>
</tr>
<tr>
<td>Day</td>
<td>0.74</td>
</tr>
<tr>
<td>No_Visual_Time</td>
<td>0.74</td>
</tr>
<tr>
<td>Clouds</td>
<td>0.61</td>
</tr>
<tr>
<td>Landscape_Nature</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Table 4, the top ten best performing words for the image-to-word model. Not surprisingly, the best performing words correspond to visual concepts, while the worst performing correspond to the most subjective concepts.

6. CONCLUSIONS AND FUTURE WORK

We have demonstrated that Markov Random Fields provide a convenient framework for exploiting the semantic context dependencies of an image. In particular, we have formulated the problem of modelling image annotation as that of direct image retrieval. The novelty of our approach lies in the use of different kernels in our non-parametric density estimation together with the utilisation of configurations that explore semantic relationships among concepts at the same time as low-level features, instead of just focusing on correlation between image features like in previous formulations.

Experiments have been conducted on two datasets, the usual benchmark Corel 5k and the collection proposed by the 2009 edition of the ImageCLEF campaign. Our performance is comparable to previous state-of-the-art algorithms for both datasets. We observed that the kernel estimation has a significant influence on the performance of our model. In particular, the “square root” kernel provides the best performance for both collections. With respect to the language model, the best result corresponds to the configuration that exploits dependencies between words at the same time as dependencies between words and visual features. This makes sense as it is the configuration that makes use of the maximum amount of information from the image. However, the ImageCLEF achieves the best performance with the word-to-image configuration although closely followed by word-to-word-to-image model. We consider that this behaviour is very revealing as the correlation between concepts is very rare in the collection, as a result of the nature of its vocabulary. Thus, as the correlation between words does not provide any added value to the model, the best performing is the image-to-word model, which detects concepts only based on low-level features.

As for future work, we intend to consider other kernels to see whether we can improve our results even more. Additionally, we will study whether a better choice of features as in Makadia et al. [22] might improve our performance.

7. ACKNOWLEDGMENTS

This work was partially funded by EU-Pharos project (IST-FP6-45035) and by Santander Universities.

8. REFERENCES

