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Abstract. We investigate the problem of evaluating the correctness of
a semantic relation and propose two methods which explore the increas-
ing number of online ontologies as a source of evidence for predicting
correctness. We obtain encouraging results, with some of our measures
reaching average precision values of 75%.

1 Introduction

The problem of understanding how two concepts relate to each other has been
investigated in various fields and from different points of view. Firstly, the level
of relatedness between two terms is a core input for several Natural Language
Processing (NLP) tasks, such as word sense disambiguation, text summarization,
annotation or correction of spelling errors in text. As a result, a wide range
of approaches to this problem have been proposed which mainly explore two
paradigms. On the one hand, corpora-based methods measure co-occurrence in
a given context (usually characterized by means of linguistic patterns) across
large-scale text collections [4,14]. On the other hand, knowledge rich methods use
world knowledge explicitly declared in ontologies or thesauri (usually, WordNet)
as a source of evidence for relatedness [3].

Secondly, from the beginnings of the Semantic Web (SW), where semantic
relations are the core components of ontologies, the task of identifying the ac-
tual semantic relation that holds between two concepts has received attention
in the context of the ontology learning field [5]. Finally, recent years have seen
an evolution of Semantic Web technologies, which lead both to an increased
number of online ontologies and to a set of mature technologies for accessing
them1. These changes have facilitated the appearance of a new generation of ap-
plications which are based on the paradigm of reusing this online knowledge [6].
These applications differ substantially from the typical knowledge-based AI ap-
plications (as well as some of the early SW applications) whose knowledge base
is provided a-priory rather than being acquired through re-use during runtime.
They also reform the notion of knowledge reuse, from an ontology-centered view,

1 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/
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to a more fine-grained perspective where individual knowledge statements (i.e.,
semantic relations) are reused rather than entire ontologies. In the case of these
applications, it is therefore important to estimate the correctness of a relation,
especially when it originates from a pool of ontologies with varying quality.

The problem we investigate in this paper is evaluating the correctness of a se-
mantic relation. Our hypothesis is that the Semantic Web is not just a motivation
for investigating this problem, but can actually be used as part of the solution.
We base this hypothesis on the observation that the Semantic Web is a large col-
lection of knowledge-rich resources, and, as such it exhibits core characteristics
of both data source types used in NLP for investigating relatedness: knowledge
resources (structured knowledge) and corpora (large scale, federated). Earlier
research has showed that although contributed by heterogeneous sources, online
ontologies provide a good enough quality to support a variety of tasks [17]. It
is therefore potentially promising to explore this novel source and to investigate
how NLP paradigms can be adapted to a source with hybrid characteristics such
as the SW. We phrase the above considerations into two research questions:

1. Can the SW be used as a source for predicting the correctness of a relation?
2. Can we adapt existing NLP paradigms to the SW?

To answer these questions we present two methods that explore online ontologies
to estimate the correctness of a relation and which are inspired from two core
paradigms used for assessing semantic relatedness. We perform an extensive ex-
perimental evaluation involving 5 datasets from two topic domains and covering
more than 1400 relations of various types. We obtain encouraging results, with
one of our measures reaching average precision values of 75%.

We start by describing some motivating scenarios where the evaluation of se-
mantic relations is needed (Section 2). Then, we describe two measures designed
for this purpose and give details over their implementation (Sections 3 and 4).
In Section 5 we detail and discuss our experimental investigation and results.
An overview of related work and our conclusions finalize the paper.

2 Motivating Scenarios

In this section we describe two motivating scenarios that would benefit from
measures to evaluate the correctness of a semantic relation.

Embedded into the NeOn Toolkit’s ontology editor, the Watson plugin2 sup-
ports the ontology editing process by allowing the user to reuse a set of relevant
ontology statements (equivalent to semantic relations) drawn from online ontolo-
gies. Concretely, for a given concept selected by the user, the plugin retrieves all
the relations in online ontologies that contain this concept (i.e., concepts hav-
ing the same label). The user can then integrate any of these relations into his
ontology through a mouse click. For example, for the concept Book the plugin
would suggest relations such as:

2 http://watson.kmi.open.ac.uk/editor_plugins.html

http://watson.kmi.open.ac.uk/editor_plugins.html
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– Book ⊆ Publication
– Chapter ⊆ Book
– Book − containsChapter − Chapter

The relations are presented in an arbitrary order. Because of the typically large
number of retrieved relations it would be desirable to rank them according to
their correctness. To date, however, no such methods exist thus hampering the
user in finding the correct relations first, or indeed preventing him from reusing
incorrect ones (e.g., Chapter ⊆ Book where subsumption has been used incor-
rectly to model a meronymy relation).

As a second scenario we consider ontology matching [7], a core Semantic Web
task. This task leads to establishing a set of mappings between the concepts of
two input ontologies (i.e., an alignment). While these mappings take the form
of semantic relations of various types, the focus of the community has primarily
been in deriving and evaluating equivalence relations by comparing them against
a-priory, manually-built, gold-standard alignments. However, as more and more
matchers are capable of identifying other mappings than equivalence, the cur-
rent gold-standard based evaluations need to be revised as it is impossible to
manually predict all types of relations that would hold between the elements of
two ontologies [16]. We hope that the methods described in this paper could be
used as a way to automatically assess the correctness of alignments containing
more than just equivalence mappings.

3 Evaluating the Correctness of Semantic Relations

To formally define our problem, let us denote a semantic relation as a triple
< s, R, t >, where s is the source concept (or domain), t is the target concept
(or range) and R denotes the relation that holds between the two concepts. R can
define a wide range of relation types, such as hyponymy, disjointness, meronymy
or simply any associative relation. Our aim is to derive a set of methods that
can predict the level of correctness of such a relation, i.e., whether it is likely to
be correct or incorrect. For the purposes of this work, we distinguish between
a relation being generically correct and correct or relevant in a given context.
When we decide on generic correctness we estimate the generic consensus on a
relation independently of an interpretation context, while contextual-correctness
or relevance should also take into account a given interpretation context. In this
work we focus on generic correctness and leave contextual issues for future work.

In this section we propose two measures that exploit the large amount of online
ontologies for predicting the correctness of a semantic relation. The measures
are based on two different paradigms. The first measure explores the knowledge
declared in online ontologies to predict correctness and as such it resembles the
knowledge-rich methods reported in [3]. The second measure treats the Semantic
Web as a corpus of ontologies for measuring the likely relatedness of the concepts
involved in the relation and the popularity of that relation. As such, it is inspired
from corpora-based methods similar to those described in [4,14].
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3.1 Exploring Ontologies as Knowledge Artifacts

The measures in this section explore ontologies as knowledge artifacts and are
based on the intuition that explicitly declared relations are more likely to be
correct than implicit ones (i.e., those which are derived through reasoning).

Let < s, R, t > be a relation which we wish to evaluate. Let n be the number
of online ontologies such that each ontology Oi contains concepts similar to s
and t (s′i = s and t′i = t) and that a relation equivalent to R (R′

i = R) is
declared explicitly (or can be inferred) between s′i and t′i. For example, for the
statement aircraft ⊇ helicopter there are three ontologies (shown in Table 1)
that explicitly (or implicitly) declare such a relation.

Table 1. Examples of derivation paths for aircraft ⊇ helicopter

Derivation Path and Path
Ontology Length

O1 : Aircraft ⊇ O1 : Helicopter 1
O1 =http://reliant.teknowledge.com/DAML/Mid-level-ontology.owl

O2 : Aircraft ⊇ O2 : Helicopter 1
O2 =http://reliant.teknowledge.com/DAML/Transportation.owl

O3 : Aircraft ⊇ O3 : HeavierThanAirCraft ⊇ O3 : Rotorcraft 3
⊇ O3 : Helicopter

O3 =http://www.interq.or.jp/japan/koi_san/trash/aircraft3.rdf

Our measure relies on the hypothesis that there is a correlation between the
length of the derivation path and the correctness of the relation. In particular, we
think that longer paths probably lead to the derivation of less obvious relations,
which are therefore less likely to be correct. To verify this hypothesis we compute
three values: AveragePathLengthR is the average of the lengths of all derivation
paths for relation R (e.g., in our case (1 + 1 + 3)/3 = 1.66), minLengthR is
the length of the shortest derivation path that lead to R (in our case, 1), and
maxLengthR is the length of the longest derivation path associated to R (in our
case, 3). Formally:

AveragePathLengthR =
∑

i PathLengthR,Oi

n

minLengthR= mini(PathLengthR,Oi); maxLengthR = maxi(PathLengthR,Oi)

3.2 Exploring Online Ontologies as a Corpus

Unlike in the previous section, the focus of the measures presented here is on
exploring the Semantic Web as a corpus of ontologies for computing concept
relatedness and relation popularity.

For a relation < s, R, t > to be evaluated, we define RelatednessStrengths,t

as the ratio between the number of ontologies from which a relation can be de-
duced between s and t (i.e., |Os,r,t|) and the number of all ontologies where these

http://reliant.teknowledge.com/DAML/Mid-level-ontology.owl
http://reliant.teknowledge.com/DAML/Transportation.owl
http://www.interq.or.jp/japan/koi_san/trash/aircraft3.rdf
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concepts are mentioned but not necessarily related (i.e., |Os,t|). This measure
is an indication of how likely it is that the two concepts are related. Indeed, if
all the ontologies that mention s and t also lead to deriving a relation between
them, then s and t are likely to be related. This measure takes its values in the
interval (0,1], with low values corresponding to terms that are weakly related,
and 1 to those that are related in all ontologies that they are mentioned. For
example, Rodents and Animals appear in 5 ontologies and each of these ontolo-
gies leads to a relation between them. While this measure does not inform about
the correctness of a particular relation R, we assume that a relation established
between terms that are not likely to be related is less likely to be correct than a
relation established between closely related terms. Formally:

RelatednessStrengths,t =
|Os,r,t|
|Os,t|

Table 2. Examples of relations between honey and food

Relation Derivation Path and Ontology

O1 : Honey ⊆ O1 : Sweetener ⊆ O1 : SweetTaste ⊆
O1 : PartiallyTangible

sibling O1 : Food ⊆ O1 : FoodOrDrink ⊆ O1 : HumanScaleObject ⊆
O1 : PartiallyTangible

O1 =http://secse.atosorigin.es:10000/ontologies/cyc.owl

⊆ O2 : Honey ⊆ O2 : Food
O2 =http://sweet.jpl.nasa.gov/ontology/substance.owl

O3 : honey ⊆ O3 : sweetener ⊆ O3 : flavoring ⊆
⊆ O3 : plant − derived − foodstuff ⊆ O3 : foodstuff ⊆ O3 : food

O3 =http://morpheus.cs.umbc.edu/aks1/ontosem.owl

We then define StrengthRelationR for measuring the popularity of a relation
R over any type of relations that can be derived between s and t. This measure
also takes its values from (0,1], with the lowest values indicating that R has a
low popularity (and therefore it is likely to be incorrect) and a value of 1 being
obtained when R is the only relation derivable between these concepts (and
therefore it is likely to be correct). For example, as shown in Table 2, because
it is more popular amongst online ontologies, the ⊆ relation between honey and
food will have a higher value for this measure (i.e., 0.66) than the sibling relation
between the same concepts (i.e., 0.33). Formally:

StrengthRelationR =
freq(R)
allRelss,t

Note that we have also experimented with various ways of normalizing these
measures, however, we do not present them because experimental evaluation has
showed a less optimal behavior than for the original measures.

http://secse.atosorigin.es:10000/ontologies/cyc.owl
http://sweet.jpl.nasa.gov/ontology/substance.owl
http://morpheus.cs.umbc.edu/aks1/ontosem.owl
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4 Implementation

We implemented our measures using the services of the Watson3 semantic web
gateway. Watson crawls and indexes a large number of online ontologies4 and
provides a comprehensive API which allows exploring these ontologies.

We have also built an algorithm that, using Watson, extracts relations between
two given terms from online ontologies. The algorithm is highly parameterized5.
For the purposes of this study we have configured it so that for each pair (A,B) of
terms it identifies all ontologies containing the concepts A’ and B’ corresponding
to A and B from which a relation can be derived between these terms. Corre-
spondence is established if the labels of the concepts are lexical variations of the
same term. For a given ontology (Oi) the following derivation rules are used:

– if A′
i ≡ B′

i then derive A
≡−→ B;

– if A′
i � B′

i then derive A
�−→ B;

– if A′
i � B′

i then derive A
�−→ B;

– if A′
i ⊥ B′

i then derive A
⊥−→ B;

– if R(A′
i, B

′
i) then derive A

R−→ B;

– if ∃ Pi such that A′
i � Pi and B′

i � Pi then derive A
sibling−→ B.

Note that in the above rules, the relations between A′
i and B′

i represent both
explicit and implicit relations (i.e., relations inherited through reasoning) in Oi.
For example, in the case of two concepts labeled DrinkingWater and tap water,
the algorithm deduces the relation DrinkingWater

�−→ tap water by virtue of
the following subsumption chain in the TAP ontology: DrinkingWater � Flat-
DrinkingWater � TapWater.

5 Experimental Evaluation

In this section we describe the experimental evaluation of the measures detailed
in Section 3. We have used the implementation presented in Section 4 over the
datasets described in Section 5.1. We then further explore and analyze the results
for both measure types (Sections 5.2 and 5.3).

5.1 Data Sets

As experimental data we have used datasets from the domain of ontology match-
ing, in the form of alignments obtained in two different test-cases put forward
by the Ontology Alignment Evaluation Initiative6(OAEI), an international body
that coordinates evaluation campaigns for this task.
3 http://watson.kmi.open.ac.uk
4 Estimated to 250.000 during the writing of this paper.
5 A demo of some of these parameters and an earlier version of the algorithm are

available at http://scarlet.open.ac.uk/
6 http://oaei.ontologymatching.org/

http://watson.kmi.open.ac.uk
http://scarlet.open.ac.uk/
http://oaei.ontologymatching.org/
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Table 3. Overview of the experimental data sets and their characteristics

Data Set Nr. of Relations Type of Relations Domain

AGROVOC/NALT 380 ⊆, ⊇, ⊥ Agriculture

OAEI’08 301 112 ⊆, ⊇, ⊥, named relations Academia

OAEI’08 302 116 ⊆, ⊇, ⊥, named relations Academia

OAEI’08 303 458 ⊆, ⊇, ⊥, named relations Academia

OAEI’08 304 386 ⊆, ⊇, ⊥, named relations Academia

Total 1452

The AGROVOC/NALT data set has been obtained by performing an align-
ment between the United Nations’ Food and Agriculture Organization (FAO)’s
AGROVOC ontology and its US equivalent, NALT. The relations established
between the concepts of the two ontologies are of three types: ⊆, ⊇ and ⊥. Each
relation has been evaluated by two experts, as described in more detail in [15].

The OAEI’08 dataset represents the alignments obtained by the Spider system
on the 3** benchmark datasets and their evaluation [16]. This dataset contains
four distinct datasets representing the alignment between the benchmark on-
tology and the MIT (301), UMBC(302), KARLSRUHE(303) and INRIA(304)
ontologies respectively. Besides the ⊆, ⊇ and ⊥ relation types, this data set also
contains named relations (e.g., inJournal(Article, Journal)). Table 3 provides
a summary of these datasets and their characteristics.

5.2 Results for the Derivation Path Based Measures

To investigate the correlation between the characteristics of the derivation path
and the correctness of a relation, we computed the AveragePathLengthR,
minLengthR and maxLengthR values for all relations in our five datasets. Then,
for each dataset we computed the mean value for AveragePathLengthR for
relations judged to be false (F-Mean) and those judged to be true (T-Mean).
We also repeated these calculations for the dataset obtained by merging the
relations in all datasets. The values of these computations are shown in columns
two and three of Table 4. We notice that for all datasets there is a clear difference
between the mean path length of true and false relations, where false relations,
on average, have a longer derivation path (always over 2) than the true ones
(always under 2). This is already a good indication that this measure captures
a valid hypothesis.

We continued our investigations by computing a threshold value for which the
assignment of correctness values correlates best with that of the human judge-
ment. This was measured in terms of a precision value computed as the ratio of
correctly assessed relations with that threshold over all relations in the dataset.
Columns four and five of Table 4 show our results. We note that there is consid-
erable variation in the values of the optimal threshold between datasets and that
some are very close to the extreme values (e.g., in the case of AGROVOC/NALT,
and OAEI’08 304 the best threshold is close to F-Mean, while for OAEI’08 302
the threshold is almost identical with T-Mean). Given this situation we tried to
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Table 4. Correlation between the derivation path characteristics and correctness

Data Set AveragePathLengthR Best Prec. Best Prec.’
F-Mean T-Mean Threshold Threshold’

AGROVOC/NALT 2.07 1.77 2.08 65% 2.00 71%

OAEI’08 301 2.58 1.29 1.66 86% 1.29 94%

OAEI’08 302 2.50 1.70 1.71 74% 1.71 80%

OAEI’08 303 2.83 1.76 2.60 76% 2.00 78%

OAEI’08 304 2.31 1.81 2.25 69% 2.00 73%

Merged Datasets 2.46 1.73 2.33 71% 2.00 75%

Fig. 1. Precision variation in terms of threshold values set for the length of the deriva-
tion path

approximate a global optimal threshold by computing it on the merged dataset.
This yielded the value 2.33. The precision values per dataset vary from a mini-
mum of 65% to a maximum of 86%, and we obtained an average precision for the
merged dataset of 71%. Figure 1 graphically depicts the variation of precision in
terms of threshold for all the five datasets and the merged datasets.

When examining the values of the minLengthR and maxLengthR measures,
we observed that the overwhelming majority of relations that were deduced with
paths of different lengths (i.e., their min and max path values were different)
were correct relations. A good example is that of aircraft ⊇ helicopter which
is explicitly declared in two ontologies, while in another ontology this relation is
defined in terms of a chain of more fine-grained relations (see Table 1). Another
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Table 5. Average values for True and False relations, best threshold and precision
values for RelatednessStrength and StrengthRelation

Relatedness Strength
Data Set Strength Best Prec. Relation Best Prec.

T F Thresh. T F Thresh.

AGROVOC/NALT 0.91 0.88 0.89 45% 0.34 0.34 0.34 36%

OAEI’08 301 0.81 0.75 0.75 41% 0.36 0.04 0.33 42%

OAEI’08 302 0.80 0.75 0.80 46% 0.38 0.11 0.11 38%

OAEI’08 303 0.58 0.50 0.55 43% 0.15 0.11 0.12 53%

OAEI’08 304 0.63 0.55 0.59 46% 0.23 0.15 0.16 56%

example relates to relations involving plants or animals, such as goat ⊆ animal.
Some ontologies contain these relations explicitly (i.e., with a path length of
1), while others contain a more fine-grained path between these concepts, e.g.,
goat ⊆ ungulate ⊆ mammal ⊆ vertebrate ⊆ animal7. We have incorporated
this observation in the calculation of the best threshold as follows: any rela-
tion which has the AveragePathLengthR over the threshold but whose values
for minLengthR and maxLengthR differ, is considered to be a True relation.
The recomputed values for the best threshold and the corresponding precision
are shown in the last two columns of Table 4. Remarkably, in the case of most
datasets this observation has lowered the threshold and for all datasets it in-
creased the precision to values ranging now from 71% to 94%. On the combined
dataset this lead to a threshold of 2% and a precision value of 75%. We regard
these values as illustrative for our derivation path based measures.

5.3 Results for the Corpora Inspired Measures

In columns two and three of Table 5 we present the average values of the
RelatednessStrength measure for True and False relations respectively. Our hy-
pothesis for this measure was that correct relations will most likely be declared
between highly related terms (i.e., where the value of this measure is high), while
the inverse will hold for false relations. Indeed, this hypothesis is verified by the
obtained numbers as, for all datasets, on average, True relations are established
between terms with higher RelatednessStrength than False ones. We note how-
ever, that the difference between the average values of this measure for True
and False relations is rather small thus potentially decreasing its discriminative
power. Indeed, this is verified when computing the best threshold and the cor-
responding precisions (columns four and five), as the precision values are quite
low, not even reaching 50%.

In the second half of Table 5 we present the results of our experiments for the
StrengthRelation measure. Our hypothesis was that high values of this measure,
corresponding to popular relations, will mostly characterize True relations, while
False relations will be associated with lower values. This hypothesis has been

7 http://morpheus.cs.umbc.edu/aks1/ontosem.owl

http://morpheus.cs.umbc.edu/aks1/ontosem.owl
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verified in four out of five datasets, where the average value of the measure is
lower for False relations than for True relations. The AGROVOC/NALT dataset
is an exception, where both values are the same. We also notice that the difference
between these values is higher than for the previous measure. This has a positive
effect on the discriminative value of the measure, and indeed, we obtain higher
precision values than for RelatednessStrength (up to 56%).

We conclude that, overall, the StrengthRelation measure has a better behav-
ior than RelatednessStrength, although both are clearly inferior to the deriva-
tion path based measures discussed before. We think this is primarily due to
the fact that, despite its increasing size, the Semantic Web is still rather sparse
and as such negatively affects any corpus based measures. These measures could
potentially be strengthened when combined with path based measures.

6 Related Work

An overview of related work suggests that various approaches are used to eval-
uate relatedness or semantic relations. The output of measures that provide a
relatedness (or similarity) coefficient [3,14] has been evaluated through theoreti-
cal examination of the desirable mathematical properties [10], by assessing their
effect on the performance of other tasks [3], and mainly by comparison against
human judgement by relying on gold-standards such as the Miller Charles data
set [13] or WordSim3538. The field of ontology learning has focused on learn-
ing taxonomic structures (consisting of hyponymy relations) and other types of
relations [5]. For example, Hearst pattern based techniques have been success-
fully scaled up to the Web in order to identify certain types of relations such
as hyponymy, meronymy [18] or complex qualia structures [5]. The evaluation
measures used to assess the correctness of the learned relations either rely on
comparison to a conceptual structure that plays the role of a gold-standard
(mostly using the measures described in [12]) or on expert evaluation. Note that
the techniques that use Hearst patterns on the Web can implicitly be used to
verify whether a relation is of a given type. As such, these techniques are the
most similar to the presented work, with the difference that they explore the
Web (a large body of unstructured knowledge) rather than the Semantic Web (a
collection of structured knowledge).

Another important body of work exists in the context of ontology evaluation
(see two recent surveys for an overview [2], [9]), where existing approaches are
unevenly distributed in two major categories. On the one hand, a few princi-
pled approaches define a set of well-studied, high level ontology criteria to be
manually assessed (e.g., OntoClean [8], Ontometric [11]). On the other hand,
automatic approaches cover different evaluation perspectives (coverage of a cor-
pus, similarity to a gold standard ontology) and levels (e.g., labels, conceptual
structure). Common to these approaches is that they focus on evaluating an

8 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

wordsim353.html

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/wordsim353.html
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ontology as a whole rather than on assessing the correctness of a given relation
as we do in this work.

7 Conclusions and Future Work

In this paper we investigated the problem of predicting the correctness of a
semantic relation. Our hypothesis was that the Semantic Web can be used as
a source of knowledge for this task and that existing NLP paradigms can be
adapted to explore online ontologies.

Based on our experimental results, we can conclude that the Semantic Web is
a promising source of information for addressing the relation evaluation problem.
Indeed, a combination of our measures which explore ontologies as knowledge
artifacts lead to an average precision value of 75% (with an individual result
of 94% for one of the datasets). Our results have also shown that the measures
inspired from different paradigms had varying performance. The measures that
explored the knowledge provided by ontologies outperformed those that regarded
the Semantic Web as a corpus. A simple explanation could be the still sparse
nature of the Semantic Web which hampers its meaningful use as a corpus. Our
future work will focus in trying to enhance and combine the methods from these
two paradigms, as well as complementing them with other sources than the SW.

Additionally to our conclusions, we observe a potential of using the proposed
measures for evaluating ontology characteristics. For example, in the case of a
relation that is derived from paths of different lengths, we can conclude that the
ontology which leads to the shorter path is more concise (less detailed) than the
one which leads to a longer derivation path. While valuable, such estimations
of conceptual complexity have been difficult to capture with current ontology
evaluation measures such as those described in [1].

In this work we have taken some simplifying assumptions which will be re-
visited during future work. Firstly, we gave a broad definition of correctness
without distinguishing between different types of correct or incorrect relations.
In future work we plan to identify and individually investigate different types
of correct/incorrect relations. Secondly, when counting named relations we have
assumed that a relation can have a single lexicalization. This assumption is how-
ever not verified in a minimal number of cases when a given semantic relation
is present with different labels. Finally, in the case of path based measures we
have given the same weight to each relation within a path, although, it is well-
known from NLP, that even within the same ontology, different relations often
cover different conceptual distances and should be weighted differently [3]. Our
ongoing work explores ontology structure characteristics (e.g., depth, breadth)
as a way to predict the granularity of the conceptual space covered by relations.
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