
Open Research Online
The Open University’s repository of research publications
and other research outputs

Modelling data intensive web sites with OntoWeaver
Conference or Workshop Item
How to cite:

Lei, Yuangui; Motta, Enrico and Domingue, John (2004). Modelling data intensive web sites with OntoWeaver. In:
International Workshop on Web Information Systems Modeling (WISM 2004), 8 Jun 2004, Riga, Latvia.

For guidance on citations see FAQs.

c© 2004 The Authors

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Modelling Data-Intensive Web Sites with OntoWeaver

Yuangui Lei, Enrico Motta and John Domingue

Knowledge Media Institute
The Open University

Walton Hall, MK7 6AA
{y.lei, e.motta, j.b.domingue}@open.ac.uk

Abstract. This paper illustrates the OntoWeaver modelling approach, which
relies on a set of comprehensive site ontologies to model all aspects of data-
intensive web sites and thus offers high level support for the design and
development of data-intensive web sites. In particular, the OntoWeaver site
ontologies comprise two components: a site view ontology and a presentation
ontology. The site view ontology provides meta-models to allow for the
composition of sophisticated site views, which allow end users to navigate and
manipulate the underlying domain databases. The presentation ontology
abstracts the look and feel for site views and makes it possible for the visual
appearance and layout to be specified at a high level of abstraction.

1 Introduction

Building a data-intensive web site is a complex task. An ad-hoc development
methodology often results in few re-usable components, costly and time consuming
development processes, and poor performance on maintenance. The situation
becomes even more difficult when customization issues arise and web sites need to be
dynamically adapted to different users. To address this problem, a number of model-
based approaches have been proposed recently, which facilitate and guide the
activities of specification and refinement of all aspects of web applications [6, 15, 10,
1, 9, 3, 11, 5]. The key feature of these approaches is that they provide high level
support for web site design, from conceptualization and specification down to
maintenance. However, these approaches do not provide expressive constructs, which
are powerful enough to describe complex user interfaces for web sites. For example,
some approaches, e.g. HDM [6] and RMM [10], only provide navigational constructs
to allow the description of navigational structures; the composition of sophisticated
user interfaces is beyond their considerations. Other approaches, like WebML [3],
OntoWebber [11] and HERA [5], do provide user interface constructs to model the
composition of user interfaces. However, their constructs are defined at a coarse-
grained level. As a consequence, web developers cannot use high-level model-based
approaches in the creation of the user interfaces. Moreover, as web sites are not
entirely represented declaratively, the functionalities of intelligent analysis and
management over web sites cannot be supported appropriately. For example, although
customization has been taken into consideration in approaches like OOHDM [15],
UWE [9], WebML [3] and HERA [5], none of these approaches provide extensive

customization support by reasoning upon the entire site model, including site structure
personalization, user interface personalization and domain data content customization.

To address these issues, OntoWeaver is proposed to employ the notion of ontology
[8] as the backbone to provide comprehensive support for the design and management
of customizable data-intensive web sites [12, 13]. In particular, OntoWeaver relies on
a set of comprehensive site ontologies to enable the declarative representation of all
aspects of data-intensive web sites. In this way, OntoWeaver is able to offer high
level support for specifying data-intensive web sites. Furthermore, the idea of
working with declarative specifications of all aspects of a web site opens up a number
of possibilities with respect to intelligent analysis and management. Customization
and site design critiquing are such examples. Specifically, as the entire site model is
available to customization, the OntoWeaver support for customization is not restricted
in the way existing approaches are. Moreover, recommendations can be produced for
web developers to improve their design by applying a set of critiquing rules to reason
upon the entire site model.

This paper illustrates the OntoWeaver approach to modelling data-intensive web
sites. It is organized as follows: section 2 presents an overview of the OntoWeaver
methodology; section 3 explains the OntoWeaver approach to modelling data-
intensive web sites in detail; section 4 describes the related work; and finally section 5
concludes our work and presents the future work.

2 An OntoWeaver Overview

An ontology is an explicit formal specification of the terms in the domain and
relations among them [8]. It provides a common understanding of topics that can be
communicated between people and application systems, and thus envisions the next
generation of the Web, Semantic Web [2]. In the context of web site design, an
ontology-based approach provides explicit vocabularies for specifying the target web
sites in an exchangeable format and thus enables the management and maintenance to
be carried out at the knowledge-level. Moreover, it results in declarative
representation of target web sites, which in turn opens up a number of possibilities
with respect to intelligent analysis and management of web sites.

OntoWeaver provides a set of comprehensive site ontologies to model all aspects
of data-intensive web sites. Specifically, a site view ontology is proposed to model
site structures and user interfaces; a presentation ontology is defined to describe the
presentation styles and layouts for web pages. Moreover, a generic customization
framework is proposed to offer high level support for customization design. With
OntoWeaver, the specification of a data-intensive web site comprises the following
components:
• A domain ontology, which abstracts the back-end data sources. It contains concepts

and relations between these concepts. The domain data content is considered as
instances of domain concepts. The relations between concepts can be used to
facilitate the navigation design.

• A domain knowledge base, which describes domain data content in terms of the
domain ontology.

• Site view specifications, which describe navigational structures for web
applications and user interfaces for web pages.

• Presentation specifications, which express the presentation styles and layouts for
components contained in the site view specifications.

• A user ontology, which models information about end users.
• A user model, which describes user profiles in terms of the user ontology.
• Customization rules, which define the rules for personalizing the generic view of a

web application towards particular users or user environments.

OntoWeaver prescribes the semantic web standard RDF [16] and RDFS [17] to
represent all aspects of web sites. Nevertheless, there are several limitations with
respect to the expressiveness of the RDF Schema language. For example, it is not
possible to specify cardinalities for properties. OntoWeaver relies on its tool suite to
solve this problem by means of internal models. In the future we plan to use the new
emerging semantic web standard OWL [18] as the underlying language to represent
ontologies and specifications (i.e. populated ontologies).

2.1 Customization Support

OntoWeaver strictly separates the domain data model, the site view model and the
presentation model. This architecture guarantees design time customization support.
Essentially site developers can make use of this modular approach to define: (1) at the
site view level, different site views over the same domain model for different user
groups or different types of devices, and (2) at the presentation level, different layouts
and appearances for the same site view thus giving flexibility for the requirements of
different user groups. However, customization should also be supported dynamically
according to the contextual information of each user individual. To this purpose,
OntoWeaver proposes a customization framework, which makes use of a user model
and a customization rule model to enable the high level support for extensive
customization design. Moreover the customization framework employs a
customization engine to reason upon the site specifications to provide customization
support for the target web sites at run time. More information about the customization
framework can be found in [12].

2.2 Site Generation

The idea of using ontologies to drive software generation has been demonstrated in
the area of knowledge acquisition, where a number of meta-tools have been
developed, which employ domain ontologies to drive the generation of knowledge
acquisition tools [4] [7] [14]. The major advantage of this methodology is that
developers, especially domain experts, can specify software tools readily, and that a
pre-existing ontology can be used as the basis for the specifications.

As shown in figure 1, OntoWeaver employs the same methodology to drive the
generation of data-intensive web sites. In particular, it relies on the domain ontologies
and the site ontologies to declaratively represent all aspects of the target software –

data-intensive web sites, and thus enables the high level support for design and
maintenance. With OntoWeaver, the web site generation process involves in the
following steps:

• Mapping the domain ontology to the site view ontology to create a site view

specification, describing complex navigational structures and sophisticated user
interfaces for allowing end users to navigate and manipulate the underlying
dynamic data content.

• Mapping the site view ontology to the presentation ontology to create a
presentation specification. This process involves in specifying presentation styles
and layouts for each user interface element contained in the site view specification.

• Compiling the site view specification and the presentation specifications to
generate data-intensive web site implementations. In particular, different
presentation specifications can be augmented for the same site view specification
to generate different site implementations. Customized web pages are generated on
the fly at run time according to the result of the customization inference, which
applies the specified customization rules and the user profiles to reason upon the
declarative site specifications.

As shown in figure 1, OntoWeaver offers a set of tools to support the design and

development of data-intensive web sites, including an Ontology Editor, which allows
developers to edit ontologies, a Site Designer, which supports the design of a data-
intensive web site, a Site Builder, which compiles site specifications into web site
implementations, a Site Customizer, which supports the customization design, a
Customization Engine, which performs inferences upon the site specifications, and an
Online Page Builder, which generates customized web pages on the fly according to
the result of the customization engine.

3 Modelling Data-Intensive Web Sites

In this section, we illustrate the OntoWeaver approach to modelling data-intensive
web sites from the following perspectives: the support for composing sophisticated

Fig.1. The OntoWeaver Framework

Inference
Engine

Site

Builder
Site

Presentation
Specifications

Site View
Specifications

Site
Designer

Site View &
Presentation
 Ontologies

User
Profiles

Ontology
 Editor

Customization
Rule Base

Site Customizer

Online Page

 Builder

A Data-
Intensive Web

Site

Domain
Ontology

User
Ontology

site structures, the support for composing sophisticated user interfaces and the support
for specifying complex layouts and visual appearances.

3.1 An Example

Figure 2 shows a domain ontology, which abstracts the data model for the KMi Web
Portal, a data-intensive web site example, which publishes information about our lab -
the Knowledge Media Institute within the Open University. There are two
relationships between the domain entities: i) the hierarchy relationship (i.e. is-a),
which has been shown using arrows in figure 2(a), and ii) the has-a relationship,
which is the relationship between class entities and property entities, as shown in
figure 2(b).

Fig.3. A site structure example of the KMi Web Portal

Non-contextual Link Contextual Link

Homepage

Affiliates Page

KMi Members Page

Software Download Page

Online Services Page

Technical Reports Page

Books Page

Projects Page

People Page

Publications Page

ROOT

Person

Affiliate KMi_member

Project Software Publication

Technical-Report Book Online_Service Download_Software

title
project_member: type: Person
web_address
picture
contact

Class Project

title
author: type: Person
abstraction
reference

Class Publication

title
author: type: Person
description
web-address
picture

Class Software

name
job_title
phone_number
email_address
web_address
picture

Class Person

(a)

(b)

Fig.2. A domain ontology example. Part (a) shows the hierarchy structure of the domain
ontology. Part (b) shows the descriptions about some of the classes.

Figure 3 shows an example site structure for the KMi Web Portal, which comprises
a number of web pages and a number of links. Each web page has its own purpose for
publishing particular information; each link facilitates navigation from one web page
to another. In particular, there are contextual links and non-contextual links. The
contextual links carry the contextual information from the source web page to the
destination web page. For example, the link between the project web page and the
people web page is contextual, as it allows navigation from the brief information of
project members to the detailed information of the corresponding person. The non-
contextual links are on the opposite, which do not carry any information along with
the navigation.

3.2 The Site View Ontology

Figure 4 shows an overview of the site view ontology: it models a web site as a
collection of logical resources; the logical resources describe web pages and are
abstracted as compositions of resource components; and the resource components are
described as compositions of a number of user interface elements, e.g. output
elements, input elements, command elements or sub resource components.

The site view ontology offers a set of navigational constructs to facilitate the
specification of complex navigational structures and a set of user interface constructs
to allow for the composition of sophisticated user interfaces. The user interface
constructs can be further classified into atomic user interface constructs, which
describe atomic user interface elements that can not be further decomposed into other
elements, and composite user interface constructs, which describe composite user
interface elements. Details of these constructs are shown in table 1.

Table 1. The constructs of the site view ontology

Construct Sub Constructs Slots Description
Composite User Interface Constructs
Site • hasIndexResource

• hasResources
• hasDomainURI

Modelling web sites as a collection of web
resources.

Fig.4. An overview of the OntoWeaver site view ontology

hasSubComponent

hasSubResource

Site

SiteResource

ResourceComponent

hasIndexResource

hasComponent

SubResource

MetaData

hasMetaData

hasResource

hasOutput

Output
Input

Command
hasInput

hasCommand

LinkItem

hasLinkItemt

SiteResource • hasComponent
• hasMetaData

Modelling web pages.

ResourceComponent • KAComponent
• DataComponent
• SearchComponent
• OutputComponent
• InputComponent

• hasSubComponent
• hasOutput
• hasInput
• hasCommand
• hasSubResource

Modelling user interface elements that
compose web pages.

KAComponent • hasClassEntity
• hasInputComponent
• hasCommand

Modelling components that allow users to
input facts to the underlying databases.

DataComponent • hasClassEntity
• hasOutputComponent

Modelling components that publish data
content coming from the underlying
databases.

SearchComponent • hasClassEntity
• hasInputComponent
• hasCommand

Describing components that allow users to
make queries over the back-end
databases.

OutputComponent • hasOutput
• hasDynamicOutput

Publishing dynamic domain content
retrieved from the specified slot of the
specified domain class entity.

InputComponent • hasOutput
• hasInput

Presenting interface elements to gather
input from end users for a particular slot of
the specified class entity.

Atomic User Interface Constructs
Input • hasClassEntity

• hasSlotEntity
Expressing the basic interface elements
that allow end users entering meaningful
information to interact with web
applications.

Output • DynamicOutput • hasOutputType
• hasOutputValue
• hasLinkItem

Abstracting the basic elements that present
a piece of information, either being
static/dynamic, text/image, plain or having
links associated with it.

DynamicOutput • hasClassEntity
• hasSlotEntity

Displaying dynamic content coming from
the specified slot of the specified class
entity.

Command • hasService
• hasResultPage

Abstracting the basic interface elements
that enable end users to invoke the
specified services and bring dynamic
content to users.

SubResource • associatedResourceURI
• isExtenralResource

Expressing the basic elements, which
import specified web pages into web
pages.

Navigational Constructs
LinkItem • DynamicLinkItem • associatedResourceURI

• isExternalResource
• hasParameter

Modelling link relationships.

DynamicLinkItem • hasClassEntity
• hasSlotEntity

Modelling the link items that come from the
underlying knowledge bases.

Parameter • hasParamterClause Describing contextual information which
flows along with links.

ParameterClause • hasClassEntity
• hasSlotEntity
• hasRelationOperator
• hasValue
• hasLogicalOperator

Abstracting parameter clauses, which
compose parameters.

MetaData • hasPageHeadline
• hasIntroduction
• hasDescription
• hasAuthors

Describing meta-information for web
pages.

3.3 Modelling Site Views

With OntoWeaver, modelling site views is achieved through two steps: i) defining site
structures for the target web site, i.e. identifying web pages and defining their
purposes and link relationships, and ii) composing detailed user interfaces for each
web page. In the next sub-sections, we will explain these processes.

3.3.1 Modelling Site Structures
By the term of site structure, we describe a coarse-grained level structure of an entire
web site, which comprises an index page, a number of page nodes and the URI of the
underlying domain ontology. OntoWeaver relies on the construct Site to describe the
components of web sites, the construct SiteResource to specify the initial purpose of
each page node and the construct LinkItem to express link relationships between page
nodes. The following RDF [16] code defines a site structure for the KMi Web Portal
(The prefix 'svo' refers to the namespace of the OntoWeaver site view ontology:
xmlns:svo=”http://kmi.open.ac.uk/people/yuangui/siteviewontology#”).

<rdf:Description rdf:about="http://localhost:8080/kmiportal">
 <rdf:type rdf:resource=”&svo;Site” />
 <svo:indexResource rdf:resource="kmiportal/indexpage"/>
 <svo:domainOntologyURI>http://kmi.open.ac.uk/yuangui/kmiontology </svo:domainOntologyURI>
 <svo:siteResource>
 <rdf:Bag>
 <rdf:li rdf:resource="kmiportal/people/affiliate" />
 …
 </rdf:Bag>
 </svo:siteResource>
</rdf:Description>

<rdf:Description rdf:about="kmiporta/indexpage" >
 <rdf:type rdf:resource=”&svo;SiteResource” />
 …
</rdf:Description>

Each page node is defined as an instance of the construct SiteResource. At the
coarse-grained level, the detailed content of page node is not considered. But the
purpose (e.g. headlines and descriptions) of each page node is identified and specified
through the construct MetaData. The link relationships between the page nodes are
defined within the specification of page nodes. At the coarse-grained level, as the
physical locations of links are not concerned, all links are placed in a default
component, called navigation component, which can be edited at the web page
composition stage. The following code specifies the initial content for the index page,
which contains meta-data and a navigation component, which further consists of a
number of links enabling the navigation from the index page to other web pages.

<rdf:Description rdf:about=”kmiportal/indexpage” >
 <rdf:type rdf:resource=”&svo;SiteResource” />
 <so:metaData rdf:resource="kmiporta/indexpage/MetaData"/>
 <so:resourceComponent rdf:resource=”kmiportal/indexpage/navigationcomponent” />
</rdf:Description>

Links are defined using the constructs Output and LinkItem. An Output instance is
a user interface element, which presents a piece of information. The links are output
elements, which are associated with link items. The following code defines a link
example, which allows the navigation from the web page in question to the
KMi_member page.

<rdf:Description rdf:about="kmiportal /indexpage/navigationcomponent/kmi_member">
 <rdf:type rdf:resource="&svo;Output"/>
 …
 <svo:linkItem>
 <rdf:Description rdf:about="kmiporta/indexpage/navigationcomponent/kmi_member/link ">
 <svo:associatedResourceURI>kmiportal/kmi_member</svo:associatedResourceURI>
 <svo:isExternalResource>false</svo:isExternalResource>

 </rdf:Description>
 </svo:linkItem>
</rdf:Description>

3.3.2 Composing User Interfaces for Web Pages
With OntoWeaver, web pages are composed of by a set of components, and each
component is further composed of a set of atomic user interface elements and sub-
components. In this way, complex user interfaces can be easily expressed. Figure 5
shows an example user interface for the index page of the KMi Web Portal. It is
composed by a number of components: a navigational component presenting
hyperlinks, a component displaying a headline and a component presenting an
introduction. Each component is further made up of a number of sub-elements. The
following code illustrates the way of composing user interface elements in
OntoWeaver. Please note that the organization and look and feel of the user interface
elements are not considered at the stage of user interface composition.

<rdf:Description rdf:about=”kmiporta/indexpage” >
 <rdf:type rdf:resource="&svo;SiteResource"/>
 <svo:resourceComponent>
 <rdf:Bag>
 <rdf:li rdf:resource==”kmiporta/indexpage/navigationcomponent” />
 <rdf:li rdf:resource==”kmiporta/indexpage/headline” />
 <rdf:li rdf:resource==”kmiporta/indexpage/introduction” />
 </rdf:Bag>
 </svo:resourceComponent>
</rdf:Descrption>

<rdf:Description rdf:about=”kmiporta/indexpage/headline” >
 <rdf:type rdf:resource="&svo;ResourceComponent"/>
 <svo:output>
 <rdf:Bag>
 …
 </rdf:Bag>

Fig.5. An example user interface for the index page of KMi Web Portal

 </svo:output>
</rdf:Description>
…

With OntoWeaver, user interface elements can be re-used, as each user interface
element has a URI to identify itself and can be referenced in any composite user
interface elements. Hence, OntoWeaver provides a cost-effective way for managing
and maintaining the user interfaces of web pages. For example, in the KMi Web
Portal, the navigation component of the index page is re-used in all other page nodes.
Thus, each web page shares the same navigation pattern. Any maintenance or
modification on the navigation component is only done once and takes effects in all
web pages.

3.3.3 Composing Dynamic User Interfaces
The dynamic features of data-intensive web sites include i) information publication,
which publishes the dynamic data content coming from the back-end knowledge base,
ii) information provision, which allows end users to submit information to the domain
knowledge base, and iii) information querying, which allows end users to search
information. OntoWeaver provides a set of user interface constructs to support for the
composition of user interfaces for realizing these dynamic features.

Information Publication. Data content publication can be specified by means of the
construct DataComponent. The definition of a data component requires i) a class
entity whose instances are to be published and ii) a list of output components, which
compose a user interface for the data component publishing the values of the specified
slot entities for the specified class entity. In particular, an output component presents
the dynamic value of a particular slot of the specified class entity. It typically contains
a static output element, which presents an explanation about the dynamic value, and a
dynamic output element, which presents dynamic value retrieved from the underlying
domain databases. The following code illustrates the example data component, which
presents instances of the class Project and has been shown in figure 6.

<rdf:Description about=”kmiportal/projectpage/dataComponent” >
 <rdf:type rdf:resource="&svo;DataComponent"/>
 <svo:classEntity rdf:resource=”Project” />
 <svo:outputComponent>

Fig.6. An example user interface for information publication

 <rdf:Bag>
 <rdf:li rdf:resource=”kmiportal/projectpage/dataComponent/contact” />
 …
 </rdf:Bag>
 </svo:outputComponent>
</rdf:Description>

<rdf:Description about=”kmiportal/projectpage/dataComponent/contact” >
 <rdf:type rdf:resource=”&svo;OutputComponent” />
 <svo:output>
 … <!-- present explanation -->
 </svo:output>
 <svo:dynamiceOutput>
 <rdf:Description about="kmiportal/projectpage/dataComponent/contact/dynamicoutput">
 <svo:outputType>text</svo:outputType>
 <svo:classEntity rdf:resource="Project"/>
 <svo:slotEntity rdf:resource="contact"/>
 </rdf:Descripltion>
 </svo:dynamicOutput>
</rdf:Description>

Information Provision and Information Querying. The information provision and
information querying are realized through forms, which allow users to submit
information to data-intensive web sites. OntoWeaver provides a construct
KAComponent to support the specification of user interfaces for updating the
underlying knowledge base and a construct SearchComponent to enable the
composition of user interfaces for querying the knowledge base. To support these user
interfaces, OntoWeaver defines a set of services for enabling the manipulation of the
back-end databases, including data content updating and querying.

A knowledge acquisition component, an instance of KAComponent, presents a
form to allow the gathering of information from end users and the creation of
instances of the specified domain class entity. The user interface of a knowledge
acquisition component comprises a list of input components, which specifies the slots
whose values are going to be used for creating new facts for the specified class entity,
and a submit command, which allows users to submit information and invoke the
corresponding knowledge acquisition operation.

A search component presents a form to allow the gathering of information from
end users and making queries over the domain knowledge base. The user interface of
a search component contains a class entity, which specifies the class entity that the
search component works on, a list of input components, which allow end users to
enter information as the foundation of carrying out queries, and a search command,
which specifies the pre-defined search service and the place to publish the search
results. In particular, the input component part specifies the slots that are used to
compose queries. The following code illustrates the search component example,
which allows end users to search information about the specified person. There is
only one input component in this search component, which means that the queries of
this user interface element are based on one particular slot of the class Person.

<rdf:Description about=”kmiportal/indexpage/searchcomponent” >
 <rdf:type rdf:resource="&svo;SearchComponent"/>
 <svo:classEntity rdf:resource=”Person” />
 <svo:inputComponent>
 <rdf:Bag>
 <rdf:li resource=”kmiportal/indexpage/searchcomponent/personname” />
 </rdf:Bag>

 </svo:inputComponent>
 <svo:command>
 <rdf:Description rdf:about=”kmiportal/indexpage/searchcomponent/command” >
 <svo:serviceName> search_instance </svo:serviceName>
 <svo:resultPage>kmiportal/search/resultpage</svo:resultPage>
 </rdf:Description>
 </svo:command>
</rdf:Description>

<rdf:Description about="kmiportal/indexpage/searchcomponent/inputcomponent/name” >
<rdf:type rdf:resource="&svo;InputComponent"/>
 <svo:output>
 …
 </svo:output>
 <svo:input>
 <rdf:Description rdf:about=" kmiportal/indexpage/searchcomponent/inputcomponent/name/input”>
 <svo:classEntity rdf:resource="Person"/>
 <svo:slotEntity rdf:resource="person_name"/>
 </rdf:Description>
 </svo:input>
</rdf:Description>

3.3.4 Defining Links
In OntoWeaver, link items contribute to the user interface composition by providing a
mechanism to define hyperlinks for output elements. Link items in web sites can be
non-contextual and contextual. The non-contextual links have been illustrated in
section 3.3.1. The contextual link requires the correct information flow between the
source web page and the destination web page. It typically constraints data content of
the destination web page.

OntoWeaver relies on the construct Parameter and the construct ParameterClause
to enable the specification of contextual links. The definition of a parameter clause
comprises five parts: a class entity and a slot entity, which value is going to be
constrained in the contextual information flow, a relation operator e.g. “equal” and
“not equal”, which defines the method to constrain data content, a value, which is
used to constrain data content, and a logical operator, which indicates the relation of
the corresponding parameter clause with the rest of the parameter clauses. A
parameter can be made up of a set of parameter clauses by means of logic operators
e.g. AND and OR.

The following code defines a contextual link example, which is associated with a
dynamic output element displaying project members for the project instances. This
contextual link allows the navigation from the project page to the people web page to
present the detailed information about the corresponding person. As we can see from
the definition, the value of the link parameter is the same as the dynamic value of the
output element, as the dynamic value indicates the contextual information flowing
with the link.

<rdf:Description about=”kmiportal/projectpage/dataComponent/members” >
 <rdf:type rdf:resource="&svo;DynamicOutput"/>
 …
 <svo:linkItem rdf:resource="kmiportal/projectpage/dataComponent/members/linkitem" />
</rdf:Descripltion>

<rdf:Description rdf:about="kmiportal/projectpage/dataComponent/members/linkitem">
 …
 <svo:parameter rdf:resource="kmiportal/projectpage/dataComponent/members/linkitem/parameter" />
</rdf:Description>

<rdf:Description rdf:about="kmiportal/projectpage/dataComponent/members/linkitem/parameter">
 <rdf:type rdf:resource="&svo;Parameter"/>
 <svo:parameterClause>
 <rdf:Description rdf:about="kmiportal/projectpage/dataComponent/members/linkitem/parameter/clause" >
 <svo:classEntityURI>Person</svo:classEntityURI>
 <svo:slotEntityURI>person_name</svo:slotEntityURI>
 <svo:relationOperator>EQUAL</svo:relationOperator>
 <svo:value>parent.outputvalue</svo:value>
 </rdf:Description>
 </svo:parameterClause>
</rdf:Description>

3.4 Modelling Visual Appearances and Layouts

The visual appearance and layout issues have been ignored in most web modelling
approaches [6, 10, 1, 5, 3]. As a consequence, web developers still need to do a lot of
low-level work to implement visual appearance and layout for web sites. To address
this problem, OntoWeaver proposes a presentation ontology, which relies on a set of
template constructs to abstract visual appearances of user interface elements, a set of
layout constructs to model the organization features of user interface elements, a
construct called Presentation to attach templates to user interface elements and a
construct called SitePresentation to group the specifications of presentation styles and
layouts together as a complete presentation model.

OntoWeaver employs a template-based approach to specifying visual appearances
for user interface elements. This approach enables the re-use of the visual appearance
specification, and thus helps developers to specify consistent visual appearances for
web pages.

3.4.1 Specifying Layouts
OntoWeaver defines two layout constructs to model typical layout for user interface
elements: i) TextLayout models layout of atomic user interface elements in terms of
alignment, which describes the alignment of a user interface element within a
component, and ii) ComponentLayout abstracts the organization features of composite
interface elements. In particular, a component layout organizes the sub-elements of its
corresponding component into five sub areas, which are top, left, middle, right and
bottom. Each area can display a number of user interface elements in a specified
layout direction, i.e. horizontal direction or vertical direction. The layout definition of
each area is abstracted by means of the construct ComponentAreaLayout, which relies
on a list of siteEntityURIs to indicate the user interface elements presented in the
corresponding area, a property called layoutDirection to describe the direction of
presenting the specified user interface elements, and a property called areaSize to
specify the size of the sub area.

Figure 6 has shown a layout example for publishing instances of the class Project:
i) the title component is placed in the top area; ii) the picture component is placed in
the left area; iii) the description component is placed in the middle area; and iv) all
other components are put in the bottom area and arranged together vertically. In
addition, the area size can be adjusted for each area. Moreover, this specification only
defines the organization of the components contained in the data component; the

further layout within the sub components can be defined in the same way, and thus
allows the specification of sophisticated layouts for user interface components.
However, because of the limited space we only show a simplified specification of this
layout example (The prefix 'spo' refers to the namespace of the OntoWeaver site
presentation ontology:
xmlns:spo=”http://kmi.open.ac.uk/people/yuangui/sitepresentationontology#”).

<rdf:Description rdf:about="kmiportalprojectpage/dataComponent/layout" >
 <rdf:type rdf:resource=”&spo;ComponentLayout" />
 <spo:siteEntityURI>kmiportal/projectpage/dataComponent</spo:siteEntityURI>
 …
 <spo:areaLayout rdf:about=“kmiportal/projectpage/dataComponent/arealayout/bottomarea" />
</rdf:Description>
 <!—the specification for the bottom area -->
 <rdf:Description rdf:about= “kmiportal/ projectpage/dataComponent/arealayout/bottomarea" >
 <rdf:type rdf:resource=”&spo;CompoentAreaLayout” />
 <spo:areaType>Bottom Area</spo:areaType>
 <spo:layoutDirection>Vertical</spo:layoutDirection>
 <spo:siteEntityURI>
 <rdf:Bag>
 <rdf:li>kmiportal/projectpage/dataComponent/outputcomponent/members</rdf:li>
 <rdf:li>kmiportal/projectpage/dataComponent/outputcomponent/contact</rdf:li>
 …
 </rdf:Bag>
 </spo:siteEntityURI>
</rdf:Description>

4 Related Work

Recently, a number of tools and approaches have been developed to address the
design and development of data-intensive web sites. Examples include RMM [10],
OOHDM [15], ARANEUS [1], WebML [3], OntoWebber [11] and HERA [5]. These
approaches have addressed the ability to model the underlying domain data structures
and handle the dynamic data content. This is typically achieved by allowing the
abstraction of domain data structures and by allowing the specification of user
interfaces for accessing the underlying domain data. In particular, like OntoWeaver,
domain data content in WebML [3] is not only readable, but also manageable, as
WebML has defined a set of operation constructs, which support the management of
the underlying domain data.

Regarding the support for modelling sophisticated site views, the approaches
mentioned above only provide limited constructs, which are not expressive enough to
offer appropriate support. Some approaches, e.g. RMM [10] and OOHDM [15], only
provide navigational constructs to allow the description of navigational structures; the
composition of sophisticated user interfaces is either beyond their considerations or is
addressed by external constructs or built-in constructs. Other approaches, like
ARANEUS [1], WebML [3] and OntoWebber [11], do provide explicit constructs to
model the composition of user interfaces. However, their constructs are typically
defined at a coarse-grained level. For example, OntoWebber provides a set of card
primitives and WebML defines a set of unit primitives to model typical content for
web pages. They claim that a card or a unit is the minimal unit of a site view.
However, each card or unit should consist of a number of components, e.g. text,

hyperlink and images. Therefore, more fine-grained concepts should be proposed to
allow cards or units to be composed according to complex requirements.

The support for modelling presentation styles and layouts has not been addressed
in most approaches. They typically rely on external approaches (e.g. style sheets) to
facilitate the specification of presentation styles. Moreover, they do not provide any
means to address the layout for web pages. This is because the declarative
specification of the web pages is not available and components within the web pages
are not addressable. As a consequence, web developers still need to do a lot of low-
level work to create complex presentation styles and layouts for web pages.

5 Conclusions and Future Work

In this paper, we have illustrated the OntoWeaver site ontologies for modelling data-
intensive web sites. OntoWeaver distinguishes itself from other web site modelling
approaches in several ways. First, it employs ontology as the backbone to drive the
design and management of data-intensive web sites. This approach enables web sites
to be represented declaratively in an exchangeable format, and thus enables the high
level support for the design and development. Second, it proposes a site view
ontology to model the site views of data-intensive web sites at a fine-grained level. In
this way, OntoWeaver offers high level support for the creation of sophisticated site
views. Third, OntoWeaver proposes a presentation ontology, which models
presentation styles and layouts of web pages. Hence, presentation styles and layouts
can be specified at a high level of abstraction. Finally, OntoWeaver proposes a
generic customization framework, which takes advantage of the declarative
specifications of data-intensive web sites and offers comprehensive customization
support.

A prototype system of OntoWeaver, including all the tools mentioned in this paper,
has been implemented. Future work focuses on i) defining constraints validating the
complex site specifications, ii) providing tools helping developers to find and correct
the specifications that are either with errors or being inconsistent in the entire site
model, and iii) using the emerging semantic web standard OWL [18] as the
underlying language to represent web applications to ensure that the entire model of
the target web application can be exploited by semantic-aware applications and thus
improve the performances of the web applications on knowledge sharing, knowledge
exchanging and personalization.

Acknowledgements

We would like to thank Maria Vargas-Vera for her insightful comments on earlier
drafts of this paper.

References

1. P. Atzeni, G. Mecca, P. Merialdo, Design and Maintenance of Data-Intensive Web Sites,
proceeding of the 6th int. Conference On Extending Database Technology (EDBT),
Valencia, Spain, March 1998.

2. T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web, Scientific American, May
2001.

3. S. Ceri, P. Fratenali, A. Bongio. Web Modelling Language (WebML): a modelling language
for designing Web sites. WWW9 Conference, Amsterdam, May 2000.

4. H. Eriksson, A. R. Puerta, and M. A. Musen (1994), Generation of Knowledge-Acquisition
Tools from Domain Ontologies, Int. J. Human-Computer Studies (1994) 41, 425-453.

5. F. Frasincar, G. Houben, and R. Vdovjak, Specification Framework for Engineering
Adaptive Web Applications, In the Eleventh International World Wide Web Conference
WWW2002.

6. F. Garzotto, P. Paolini and D. Schwabe, HDM—A Model-Based Approach to Hypertext
Application design, ACM Trans. Inf. Syst. 11, 1 (Jan. 1993), Pages 1 – 26.

7. W. E.Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, and M. A. Musen
(1999), Knowledge Modelling at the Millennium, In Proc. the 12th International Workshop
on Knowledge Acquisition, Modelling and Management (KAW’99) Banff, Canada, October
1999.

8. T. R. Gruber, Toward Principles for the Design of Ontologies Used for Knowledge Sharing,
In Formal Ontology in Conceptual Analysis and Knowledge Representation, edited by
Nicola Guarino and Roberto Poli, Kluwer Academic Publishers, in press.

9. R. Hennicker and N. Koch. A UML-based Methodology for Hypermedia Design. In A.
Evans, S. Stuart, and B. Selic, editors, Proc. of UML 2000 Conference, York, England, Oct.
2000. Springer LNCS 1939.

10. T. Isakowitz, E.A. Stohr and P. Balasubramaninan, RMM: A Methodology for Structured
Hypermedia Design, Communications of the ACM, August 1995.

11. Y. Jin, S. Decker, Gio Wiederhold, OntoWebber: Model-Driven Ontology-Based Web site
Management, Semantic Web Workshop, Stanford, California, July 2001.

12. Y. Lei, E. Motta and J. Domingue, Design of Customized Web Applications with
OntoWeaver. In proceedings of the International Conference on Knowledge Capture,
October, Florida, USA, 2003, pp 54-61.

13. Y. Lei, E. Motta and J. Domingue, An Ontology-Driven Approach to Web Site Generation
and Maintenance, In proceedings of 13th International Conference on Knowledge
Engineering and Management, Sigüenza, Spain 1-4 October 2002, pp. 219-234.

14. E. Motta, S. Buckingham Shum, and J. Domingue (2000), Ontology-Driven Document
Enrichment: Principles, Tools and Applications, Int. J. Human-Computer Studies (2000) 52,
1071-1109.

15. D. Schwabe and G. Rossi, An Object Oriented Approach to Web-Based Application Design,
Theory and Practice of Object Systems 4(4), 1998. Wiley and Sons, New York, ISSN 1074-
3224.

16. Resource Description Framework (RDF) Model and Syntax, W3C Proposed
Recommendation. http://www.w3.org/TR/PR-rdf-syntax/.

17. Resource Description Framework (RDF) Schema Specification 1.0, W3C Candidate
Recommendation, http://www.w3.org/TR/2000/CR-rdf-schema-20000327/, 2000.

18. OWL Web Ontology Language, W3C Working Draft, March 2003,
http://www.w3.org/TR/2003/WD-owl-features-20030331/.

