
Open Research Online
The Open University’s repository of research publications
and other research outputs

Orchestration of semantic web services in IRS-III
Conference or Workshop Item
How to cite:

Confalonieri, Roberto; Domingue, John and Motta, Enrico (2004). Orchestration of semantic web services in
IRS-III. In: First AKT Workshop on Semantic Web Services (AKT-SWS04), 8 Dec 2004, Milton Keynes, UK.

For guidance on citations see FAQs.

c© 2004 The Authors

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

*This work is supported by the DIP (Data, Information and Process Integration with Semantic
Web Services) and AKT (Advanced Knowledge Technologies) projects. DIP (FP6 - 507483)
is an Integrated Project funded under the European Union's IST programme. AKT is an In-
terdisciplinary Research Collaboration (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council under grant number GR/N15764/01. The AKT IRC
comprises the Universities of Aberdeen, Edinburgh, Sheffield, Southampton and the Open
University.

Orchestration of Semantic Web Services in IRS-III*

Roberto Confalonieri1,2, John Domingue1 and Enrico Motta1

1Knowledge Media Institute, The Open University, Milton Keynes, UK
{r.c.confalonieri, j.b.domingue, e.motta}@open.ac.uk

2Department of Computer Science, Università di Bologna, Bologna, Italy
confalon@cs.unibo.it

Abstract. In this paper we describe our orchestration model for IRS-III. IRS-III
is a framework and platform for developing WSMO based semantic web ser-
vices. Orchestration specifies how a complex web service calls subordinate web
services. Our orchestration model is state-based: control and data flow are de-
fined by and in states respectively; web services and goals are modeled as ac-
tivities and their execution triggers state changes. The model is illustrated with
a simple example.

1 Introduction

Web services are the new way of interacting with and using the web; users are ex-
pected to seek for appropriate web services that help them to achieve their goals. This
process of manual search may be automated if web services are augmented with se-
mantic descriptions and infrastructures for supporting them are developed [�3]; IRS-III
[�2] is a framework and implemented infrastructure which supports the creation of
semantic web services according to the WSMO ontology [�6].

Web service interfaces play an important role in the composition and execution of
web services. Choreography describes the interaction process between web services.
Orchestration represents the workflow steps of a composite web service fulfilling its
capability as its decomposition. Whilst choreography for IRS-III has been almost
defined [�1], orchestration has not.

In this paper we present an ontology for modeling the orchestration of a composite
web service in IRS-III and an interpreter that executes it. The model is in OCML [�4].

The paper is organized as follows: Section 2 briefly overviews orchestration.
Section 3 describes our model and implementation issues through a simple example.
Section 4 contains conclusions and describes future work.

2 Orchestration

Orchestration is a process-centric view of the interactions between the composite
web service and the sub services that it relies upon. It includes complex process se-

Orchestration of Semantic Web Services in IRS-III

mantics (loops, conditions, fork...) and/or workflow steps that are outsourced to exter-
nal services. In a nutshell orchestration describes how the service works from the
provider's perspective, i.e. how a service makes use of other services represented by
activities in order to achieve its capability [�5, �7]. This can be done in two ways: the
specific sub services are fixed in the activities at design-time (static composition);
activities are dynamically bounded by declaring them as goal descriptions on the basis
of any goal-service discovery mechanism (automatic composition). An activity is
expected to use a particular interface for the sub services it binds at run-time; the in-
terface contains details about services it uses to solve the goal currently being proc-
essed. Heterogeneity mismatches between the used interface and the one needed have
to be resolved through mediation.

3 State-based orchestration in IRS-III

We choose a state machine representation for the orchestration of semantic web
services in IRS-III. In our approach states define the control flow, transitions represent
activities and activity execution triggers state change. An activity can be a web service
(simple or composite) or a goal as IRS-III supports capability-driven invocation of
web services.

According to the WSMO standard model, a web service interface description is
composed of choreography and orchestration; an orchestration has a problem solving
pattern (fig.1).

currency-converter-orchestration (orchestration)
 has-problem-solving-pattern :value currency-converter-psp

currency-converter-psp (problem-solving-pattern)
 has-start :value currency-converter-psp-start
 has-end :value currency-converter-psp-end

Fig. 1 Orchestration definition of the currency converter composite web service

In our orchestration ontology a problem solving pattern consists of a set of classes
modeling states and activities, with a start-state and end-state classes connected by
control construct state classes. Start-state and end-state represent respectively the
entry and exit data flow points for the data of the composite web service being orches-
trated (fig.2).

currency-converter-psp-start (start-state)
 has-input-role :value has_source_currency
 :value has_target_currency
 :value has_amount
 has_source_currency :value(wsmo-orchestration-role-value
 currency-converter-web-service ‘has_source_currency)
 has_target_currency :value (wsmo-orchestration-role-value
 currency-converter-web-service ‘has_target_currency)
 has_amount :value (wsmo-orchestration-role-value
 currency-converter-web-service ‘has_amount)
 has-later-state :value exchange-rate-sequence-state

Roberto Confalonieri, John Domingue and Enrico Motta

currency-converter-psp-end (end-state)
 has-output-role :value has-currency-conversion
 has-currency-conversion :value (wsmo-orchestration-role-value
 multiply-activity ‘multiply-output)

Fig. 2 Start-state and end-state definitions of the currency converter orchestration; input and
output-role value slots reflect input and output-role of the currency converter web service

Control states are wrappers for activities (fig.3) and they represent the control flow
as an execution path in the model. We’ve defined three control construct states:

• sequence-state: the sequence construct is the elementary unit of orchestration
as web services and goals are represented by activity in sequence-states;

exchange-rate-sequence-state (sequence-state)
 has-activity :value exchange-rate-activity
 has-later-state :value multiply-sequence-state

multiply-sequence-state (sequence-state)
 has-activity :value multiply-activity
 has-later-state :value currency-converter-psp-end

Fig. 3 Sequence state definitions of the currency converter orchestration: the currency-
converter web service is composed by two activities to be executed in sequence; the in-
terpreter selects the next state through the has-later-slot

• conditional-state: the conditional construct checks if a certain condition is
true or false and selects the appropriate execution branch; the condition is an
OCML relation, namely a kappa-expression, which ranges on either outputs
of previous activities or inputs of the composite web service orchestrated;
loops as do-while and repeat-until can be represented in terms of the condi-
tional state;

• fork+join-state: the fork+join construct consists of concurrent execution of a
bag of activities whose results have to be joined.

The data flow, i.e. how the data are used before and after the execution of activi-

ties, is defined in the activity classes by means of has-input-role and has-
output-role value slots (fig.4).

multiply-activity (activity)
 activity-type :value multiply-goal
 activity-ontology :value wsmo-multiply
 has-input-role :value multiply-input1
 :value multiply-input2
 has-output-role :value multiply-output
 multiply-input1 :value (wsmo-orchestration-role-value
 currency-converter-psp-start ‘has_amount)
 multiply-input2 :value (wsmo-orchestration-role-value
 exchange-rate-activity ‘has_exchange_rate)
 multiply-output :type number

Fig. 4 Multiply activity definition as a goal: the multiply-output slot is a relation for the out-
put data flow in the model; exchange-rate activity definition is similar

Orchestration of Semantic Web Services in IRS-III

We have adopted a consumer-pull convention for data. The data are stored locally
and the consumer later retrieves the data needed through a wsmo-orchestration-role-
value OCML function (fig.4). Web services may have heterogeneous input and output.
For their composition either to the binding a mediation mechanism for the data is
required. The aforementioned function therefore plays a double role in the model:

• data binding: the first argument of the function specifies which activity or
state class the current activity relies upon,

• data mapping: the second argument of the function specifies the output-role
needed and the evaluation of the function assigns a value to the input-role of
the current activity.

A composite web service invocation results in instances of the appropriate orches-

tration classes being created at runtime. The OCML model is interpreted by an orches-
tration engine written in Common Lisp. The interpreter in a straightforward way reads
state by state, instantiates the state it is currently processing and invokes the appropri-
ate handler. At instantiation time the input-roles needed for the current activity are
retrieved; each handler is responsible for executing, monitoring the activity and stor-
ing its result properly before selecting the next state. The “storage” is represented by
an OCML relation of the form (output-role instance-class-name output-
role-value) asserted as a fact to the orchestration ontology at runtime (fig.4).

4 Conclusions and Future Work

The orchestration engine is stateless as the web services in IRS-III; our model does
not satisfy the orchestration requirements outlined in [�5] as our intention was first to
be able to run a composite web service in IRS-III. Our plan is to investigate more on
semantic aspects related on the automatic composition following an approach based
on parametric design; to add fork and join control construct, to make the engine state-
full and to integrate orchestration with the choreography model presented in [�1].

References

1. Domingue, J., and Galizia, S. Towards a Choreography in IRS-III. Proc. of the Workshop
on WSMO Implementations (WIW 2004) Frankfurt, Germany, September 29-30, 2004.

2. Domingue, J., et al. IRS-III: A Platform and Infrastructure for Creating WSMO-based
Semantic Web Services. Proc. of the Workshop on WSMO Implementations (WIW 2004)
Frankfurt, Germany, September 29-30, 2004.

3. McIlraith, S., Son, T. C., and Zeng, H. Semantic Web Services. IEEE Intelligent Systems,
Mar/Apr. 2001, pp.46-53.

4. Motta, E. An Overview of the OCML Modelling Language. KEML98.
5. Peltz, C. Web Service Orchestration and Choreography. IEEE Journal, Computer 36 (10).

46-52 October, 2003.
6. Web Service Modeling Ontology – Standard, available at: http://www.wsmo.org/2004/d2/
7. Orchestration in WSMO, available at: http://www.wsmo.org/temp/d15/v0.1/20040529/

