The Open UniversitySkip to content
 

Alignment of astrocytes increases neuronal growth in three-dimensional collagen gels and is maintained following plastic compression to form a spinal cord repair conduit

East, Emma; Blum de Oliveira, Daniela; Golding, Jon P. and Phillips, James B. (2010). Alignment of astrocytes increases neuronal growth in three-dimensional collagen gels and is maintained following plastic compression to form a spinal cord repair conduit. Tissue Engineering Part A, 16(10) pp. 3173–3184.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1089/ten.tea.2010.0017
Google Scholar: Look up in Google Scholar

Abstract

After injury to the spinal cord, reactive astrocytes form a glial scar consisting of highly ramified cell processes that constitute a major impediment to repair, partly due to their lack of orientation and guidance for regenerating axons. In some nonmammalian vertebrates, successful central nervous system regeneration is attributed to the alignment of reactive glia, which guide axons across the lesion site. Here, a three-dimensional mammalian cell-seeded collagen gel culture system was used to explore the effect of astrocyte alignment on neuronal growth. Astrocyte alignment was mapped within tethered rectangular gels and was significantly greater at the edge and middle of the gels compared to the control unaligned regions. When neurons were seeded on and within astrocyte gels, neurite length was greatest in the areas of astrocyte alignment. There was no difference in expression of astrocyte reactivity markers between aligned and control areas. Having established the potential utility of astrocyte alignment, the aligned gels were plastic compressed, transforming them into mechanically robust implantable devices. After compression, astrocytes remained viable and aligned and supported neurite outgrowth, yielding a novel method for assembling aligned cellular constructs suitable for tissue engineering and highlighting the importance of astrocyte alignment as a possible future therapeutic intervention for spinal cord repair.

Item Type: Journal Article
Copyright Holders: 2010 Mary Ann Liebert, Inc.
ISSN: 2152-4955
Project Funding Details:
Funded Project NameProject IDFunding Body
Not SetNot SetWellcome Trust
Extra Information: The paper is openly accessible on the publisher's website via the DOI link above.
Academic Unit/Department: Science > Life, Health and Chemical Sciences
Science
Interdisciplinary Research Centre: Biomedical Research Network (BRN)
Item ID: 22822
Depositing User: Emma East
Date Deposited: 18 Aug 2010 15:17
Last Modified: 07 Mar 2014 13:50
URI: http://oro.open.ac.uk/id/eprint/22822
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk