The Open UniversitySkip to content

Embeddings and designs

Grannell, Mike and Griggs, Terry (2009). Embeddings and designs. In: Wilson, Robin and Beineke, LW eds. Topics in Topological Graph Theory. Cambridge: Cambridge University Press, pp. 268–288.

Google Scholar: Look up in Google Scholar


When a graph is embedded in a surface, the faces that result can be regarded as the blocks of a combinatorial design. The resulting design may be thought of as being embedded in the surface. This perspective leads naturally to a number of fascinating questions about embeddings, in particular about embeddings of Steiner triple systems and related designs. Can every Steiner triple system be embedded, can every pair of Steiner triple systems be biembedded, and how many embeddings are there of a given type?

Item Type: Book Section
ISBN: 0-521-80230-X, 978-0-521-80230-7
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 22798
Depositing User: Mike Grannell
Date Deposited: 18 Aug 2010 13:52
Last Modified: 07 Dec 2018 09:39
Share this page:

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU