Non-orientable biembeddings of Steiner triple systems of order 15

Bennett, G. K.; Grannell, M. J. and Griggs, T. S. (2004). Non-orientable biembeddings of Steiner triple systems of order 15. Acta Mathematica Universitatis Comenianae, 73(1) pp. 101–106.

URL: http://www.emis.de/journals/AMUC/_vol-73/_no_1/_be...

Abstract

It is shown that each possible pair of the 80 isomorphism classes of Steiner triple systems of order 15 may be realized as the colour classes of a face 2-colourable triangulation of the complete graph in a non-orientable surface. This supports the conjecture that every pair of STS($n$)s, $n \ge 9$, can be biembedded in a non-orientable surface.

Viewing alternatives

Item Actions

Export

About

Recommendations