The Open UniversitySkip to content
 

Conical limit sets and continued fractions

Crane, Edward and Short, Ian (2007). Conical limit sets and continued fractions. Conformal Geometry and Dynamics, 11 pp. 224–249.

Full text available as:
[img]
Preview
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (320Kb)
URL: http://www.ams.org/journals/ecgd/2007-11-16/S1088-...
Google Scholar: Look up in Google Scholar

Abstract

Inspired by questions of convergence in continued fraction theory, Erdős, Piranian and Thron studied the possible sets of divergence for arbitrary sequences of Möbius maps acting on the Riemann sphere, S2. By identifying S2 with the boundary of three-dimensional hyperbolic space, H3, we show that these sets of divergence are precisely the sets that arise as conical limit sets of subsets of H3. Using hyperbolic geometry, we give simple geometric proofs of the theorems of Erdős, Piranian and Thron that generalise to arbitrary dimensions. New results are also obtained about the class of conical limit sets; for example, it is closed under locally quasisymmetric homeomorphisms. Applications are given to continued fractions.

Item Type: Journal Article
Copyright Holders: 2007 American Mathematical Society
ISSN: 1088-4173
Academic Unit/Department: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 22457
Depositing User: Ian Short
Date Deposited: 29 Jul 2010 11:31
Last Modified: 08 Oct 2016 01:54
URI: http://oro.open.ac.uk/id/eprint/22457
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

▼ Automated document suggestions from open access sources

Actions (login may be required)

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk