
Open Research Online
The Open University’s repository of research publications
and other research outputs

Requirements-driven design of service-oriented
interactions
Journal Item
How to cite:

Mahfouz, Ayman; Barroca, Leonor; Laney, Robin and Nuseibeh, Bashar (2010). Requirements-driven design of
service-oriented interactions. IEEE Software, 27(6) pp. 25–32.

For guidance on citations see FAQs.

c© 2010 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/MS.2010.113

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/MS.2010.113
http://oro.open.ac.uk/policies.html

1

Requirements-Driven Design of Service-Oriented Interactions

Ayman Mahfouz, Webalo Inc.

Leonor Barroca and Robin Laney, The Open University, UK.

Bashar Nuseibeh, The Open University, UK, and Lero, Ireland.

Abstract

Designing service-oriented interactions requires addressing concerns of many stakeholders across

enterprise boundaries. To ensure that stakeholders’ concerns are well-understood and properly

addressed, we modularize them into four viewpoints that cover representations ranging from business

goals to service messaging protocol. We propose a framework for interaction design that helps maintain

consistency between representations across the viewpoints. The framework allows stakeholders to

collaborate on reconciling their business needs and automatically obtain messaging protocols that

satisfy these needs. The viewpoints and the framework enable a requirements-driven collaborative

interaction design process.

Specifying Service-Oriented Interactions

Service-Oriented Architecture (SOA) is emerging as an enabler for inter-enterprise interactions.

Services provide platform-independent abstractions around software systems thereby enabling

interoperability between heterogeneous systems [1]. Several languages are emerging as standards for

describing service interfaces, service architectures, and inter-enterprise interaction protocols (sidebar

1). Inter-enterprise service interaction protocols specify expected message exchanges between a set of

abstract roles [2]. At runtime, messaging between actual participants must abide by the established

protocol between the roles they play in the interaction.

Sidebar 1: Relevant SOA and Web Service (WS) Standards
Language Used to Specify

WS- Description Language (WSDL)

www.w3.org/TR/wsdl

Message types and service operation signatures.

WS-Choreography Description Language (WS-CDL)

www.w3.org/TR/ws-cdl-10/

Multi-participant messaging protocol from a global/neutral point of view.

WS-Business Process Execution Language (WS-BPEL)

www.oasis-open.org/committees/wsbpel/

Service messaging coordination from a single participant point of view.

WS-BPEL Extension for People (BPEL4People)

www.oasis-open.org/committees/bpel4people/

Human tasks within a WS-BEPL specification

SOA-Modeling Language (SoaML)

www.omg.org/spec/SoaML/

High-level service architecture, business information model, and service

component architecture.

In WS-CDL, messaging and control flow of an interaction protocol are specified using these

constructs (pseudo-language used for brevity):

2

- Send…To: specifies sending of a message of a certain type from a sender role to a recipient role.

- Sequence: encloses activities that must execute in order.

- Parallel: encloses activities that may execute concurrently.

- Choice: represents conditional choice between mutually-exclusive options.

- While (condition) Do: represents repetition.

Consider the messaging protocol for a vehicle repair interaction between three roles; Insurer,

Claimant, and Repairer:

The protocol specifies that the Claimant submits a claim to the Insurer then obtains an appointment to

get their vehicle repaired at the Repairer’s shop. Eventually, the Repairer notifies the Claimant that the

repairs are done (by specifying a vehicle pick-up date) and they bill the Insurer for the cost.

Often times the design and execution of inter-enterprise interactions are overseen by a global

observer, e.g. regulatory agency, that ensures compliance of participants to the protocol. The global

observer in this example is the State’s Department of Insurance which regulates the insurance business

and handles disputes about non-compliance. WS-CDL specifies messaging between the interacting roles

from the point of view of a global observer, thereby catering for these needs. By doing so, WS-CDL also

abstracts away from internal business process specifics of participants, thereby providing interoperable

protocol specification.

Even though these emerging languages (sidebar 1) provide interoperable specifications, they have

serious limitations:

• They focus on operational aspects of the interaction and hence are detached from the

participants’ business goals. It is hard ensure that a messaging protocol, say in WS-CDL, satisfies

the participants’ goals without explicitly representing these goals and relating them to messaging

activities. SoaML attempts to represent high-level service architectures, nevertheless it does not

Sequence {

 Claimant Send Claim To Insurer

 Insurer Send ClaimApproval To Claimant

 While (NOT AppointmentConfirmed) Do {

 Claimant Send AppointmentRequest To Repairer

 Choice {

 Repairer Send AppointmentConfirmed To Claimant

 Repairer Send AppointmentRejected To Claimant

 }

 }

 Parallel {

 Repairer Send VehiclePickupDate To Claimant

 Sequence {

 Repairer Send Invoice To Insurer

 Insurer Send Payment To Repairer

 }

 }

}

3

provide mechanisms for refining these architectures into messaging protocols. An architect using

SoaML is left to manually construct a multi-participant messaging protocol with no systematic

means for ensuring that it is consistent with the high-level architecture or that it satisfies the goals

of participants. The matter is complicated when considering that goals of participants often conflict

and SoaML does not help reconcile these goals.

• They only specify electronic messaging and leave out physical activities, i.e. activities carried out

by humans in a non-electronic medium. Physical activities are often crucial to achieving the goals

of the interaction. For instance, the vehicle repair interaction is pointless if the Repairer does not

physically perform vehicle repair, even if all required messaging takes place as specified by the

protocol. Furthermore, the ordering of physical activities relative to the electronic messaging is not

specified, which severely limits the utility of the protocol. For instance, we cannot specify that the

Repairer is obliged to finish all repairs before billing the Insurer. Even though BPEL4People tackles

human activities, it is limited to specifying a human’s interaction with the electronic system, and

only from one participant’s point of view.

These deficiencies call for a richer specification of the interaction. In particular, the need for

capturing business goals and their refinement into activities, messaging and otherwise, call for

specifying the interaction at the level of Models of Organizational Requirements (MOR) motivating the

messaging [3]. MOR capture goals motivating participants to interact and all activities that constitute

the interaction, including physical activities.

Whereas the high-level nature of MOR makes them useful for business-level reasoning, messaging

protocols are adequate as a machine-readable specification. Not only do the two representations

address different concerns, but they also serve different purposes for the two different types of

stakeholders, i.e. interaction participants and the global observer. To ensure the interaction design

process properly serves all stakeholders we need to disentangle these concerns.

Separation of Design Concerns

Having identified two types of stakeholders and two distinct levels of abstraction, concerns of

interaction design can be separated along two fundamental axes: the stakeholder axis and the

abstraction axis.

The Stakeholder Axis

The stakeholder axis separates concerns of interaction participants from those of the global

observer.

Participants

Each interaction participant is a stakeholder that wishes to fulfill business needs relevant from their

local point of view. The main concern of each participant is ensuring that their goals from joining the

4

interaction are achieved. To ensure that each goal is addressed adequately, a participant needs to

determine how each goal is to be achieved, i.e. which activities performed in the course of the

interaction contribute towards the fulfillment of the goal.

Equally important is the need to enforce business constraints, such as data flow between business

activities and pre-conditions on their execution, imposed by their internal business policies. A

participant needs to ensure that their adherence to the interaction protocol does not lead to violation of

any of their internal business policies, and vice versa.

Global Observer

The global observer, i.e. regulatory agency, is a stakeholder whose concerns are to facilitate the

interaction and encourage participants to interact.

• To encourage participants to interact, the global observer helps potential participants assess

and mitigate risks involved in the interaction. The global observer also needs to ensure fairness

by rationalizing the balance between obligations and rights of each participant; unfair rules will

deter participants from joining the interaction.

• To facilitate the interaction, the global observer aims to ensure interoperability, for which

specifying upfront the obligations of the interacting roles is essential. The specification of

obligations becomes a standard contract for participants wishing to play one of the roles in the

interaction.

Concerns of the global observer are global in that they are not specific to any participant, but rather

broadly benefit all potential participants. For instance, the objectives of the global observer could be

promoting trade, enabling advancement across an industry sector, or ensuring public safety.

The Abstraction Axis

The abstraction axis separates business-level concerns, captured in MOR, from concerns related to

messaging specification.

Organizational Requirements

Organizational requirements exhibit a high level of abstraction, which makes them a closer match to

business concepts than the machine-oriented messaging specification. MOR are thus more suited for

processing by humans, e.g. business analysts and architects acting on behalf of the stakeholders.

Concerns of analysts and architects are centered on identifying goals of their enterprise and

reasoning about means for their fulfillment:

• Analysts need to identify, represent, and decompose business problems in ways that allow

them to deepen their understanding of the problems and share business domain knowledge [4].

5

• Architects need means to explore and evaluate alternative solutions for business problems and

rationalize decisions made in choosing solutions. To specify a business solution, architects need

to identify business activities, electronic or physical, required for implementing the solution and

ensure that the execution of these activities satisfies the business goals.

Even though stakeholders in the interaction share the concern of inter-enterprise interaction

viability, their local business needs may conflict. MOR capture inter-connections between business

processes of interacting roles, thereby providing means for reconciling their conflicting needs.

Messaging Specification

Messaging specification addresses concerns about correctness of message content and messaging

sequences exchanged during the interaction. Messaging protocols are the basis for ensuring that

runtime inter-enterprise messaging between participants adheres to their obligations. Ultimately, the

protocol is intended for use by machines, i.e. services and software clients that exchange electronic

messages and carry out the interaction. For these services and clients to adhere to the protocol, it has to

be made available to them in some machine-readable language.

Messaging specification also addresses concerns about intra-enterprise messaging coordination. An

enterprise may be participating in many different interactions with several participants at the same

time. In addition to fulfilling their obligation towards each interaction, an enterprise needs to coordinate

their overall messaging activities to ensure that their internal business process complies with their

business policies.

Four Viewpoints for Service Interaction Design

Segregating concerns along two axes produces the four viewpoints for interaction protocol design

represented by the four quadrants in figure 1. Each viewpoint embodies a sub-set of concerns of a

certain stakeholder.

 Global Observer Participant

R
e
q
u
ir
e
m
e
n
ts
 Global Requirements

Q1

Roles, goals,

dependencies, and risks

Local Requirements

Q2

Goal-activity refinement and

business policies for one role

M
e
s
s
a
g
in
g
 Choreography

Q3

Inter-enterprise messaging

protocol from neutral point-of-view

Orchestration

Q4

Service messaging

sent/received by one participant

S t a k e h o l d e r A x i s

A
b
s
t
r
a
c
t
i
o
n

A
x
is

Figure 1. Four viewpoints for interaction protocol design and how they fit in the larger SOA picture [1]. (Note

how non-functional concerns orthogonal to protocol specification are represented as parallel planes.)

Functionality
Quality of Service

Security
Service Management

Collaborate

Reconcile

Verify

D
e

ri
v
e

D
e

ri
v
e

6

(Q1) Global Requirements

This view embodies the global stakeholder’s concerns of specifying the context of the interaction in

terms of: the interacting roles, their high-level motivations for interacting, dependencies that make the

interaction possible, and risk that comes with these dependencies. Role-Dependency (RD) diagrams [5]

are suitable for this view; they are used to specify the interacting roles and analyze their inter-

dependencies from a global point.

Figure 2.a depicts our proposed usage of RD diagrams to represent the global requirements of the

vehicle repair interaction. Each role is represented as an oval with goals corresponding to that role

attached to it. Dependencies between roles motivate the interaction between them. Roles depend on

each other for fulfilling goals, performing activities, or furnishing resources. For example, the Claimant

depends on the Repairer to get their vehicle fixed.

Dependencies are fulfilled either via electronic messaging or physically. Some dependencies are

physical by nature; for instance, the Claimant has to haul their vehicle to fulfill “Hand Over Vehicle”.

Otherwise, MOR provide the flexibility of making design decisions as to how to fulfill each dependency.

For instance, the interaction can be designed such that the Insurer either mails a check or provides an

electronic payment to fulfill “Payment”.

 Insurer

 Repairer
 Claimant

Get Vehicle Repaired

 Get Vehicle Repaired

 Cover

Repair Cost

 Get Accident
Information

 Profit from Repair

 Facilitate Repairs

Role

Activity

Goal

Resource

Dependency

Refines

Precedes

Claim Approval
Payment

 Hand Over
Vehicle

Profit from

Repair

Inspect

Vehicle

Perform

Repairs

Issue

Invoice
Schedule

Appointment

Specify

Pickup Date

Manage

Garage Floor

Manage

Vehicle Repair

 Repairer

Collect

Payment

Receive

Payment
Fix

Damage

Use New

Parts

Use Used

Parts

Replace

Parts

Or

And

1..∞

Repetition 1..∞

 Specify

Repair Cost

Pickup Date

Figure 2.a. Global requirements model for the interaction depicting roles and their dependencies.

Figure 2.b. Local requirements model for the Repairer.

7

RD diagrams enable rationalization of responsibilities of goal fulfillment. For example, the Claimant’s

expectation that the Insurer will “Cover Repair Cost” is consistent with the Repairer’s reliance on the

Insurer for “Payment”.

RD diagrams also enable reasoning about risks that involved in delegating responsibility. For

example, although it reasonable to assume that the Repairer has the necessary expertise to fulfill the

“Specify Repair Cost” goal, it arguably entails risks of fraud. Identifying such risks drives further analysis

to mitigate them or explore alternative responsibility assignment.

Outlining the interaction context includes specifying what roles and goals are NOT part of the

interaction. For instance, the role of “Parts Supplier” and goals related to ordering vehicle parts are not

part of the interaction.

(Q2) Local Requirements

This view embodies business-level concerns of one participant which are to specify their business

goals, determine what activities are required to fulfill the goals, and ensure that these activities comply

with business policies. Goal-Activity (GA) diagrams [5] are suitable for representing this view.

GA diagrams provide mechanisms for successively refining high level goals into finer-grained goals

and eventually activities[5] for one role. A GA diagram is constructed from the point of view of one role,

and hence may include goals and activities relevant only to that role and not necessarily to the global

view. Figure 2.b shows how we capture the local view of the Repairer role in a GA diagram.

GA diagrams specify what activities, including both physical and messaging activities, are carried out

by a participant to achieve their goals. Through refinement, relations between high-level goals and

operational activities are established, thereby allowing for reasoning about how the activities contribute

towards goal achievement. For example, the Repairer needs to “Specify Pickup Date” as part of

achieving “Manage Garage Floor”, whereas in the RD diagram the pickup date appeared to serve a

purpose only for the Claimant.

GA diagrams also capture business policies. Data flow and ordering constraints between activities are

represented as activity precedence links. For instance, it can now be seen that the Repairer is obliged to

finish all repairs before issuing an invoice. Note how using MOR the ordering of physical activities

relative to messaging activities is explicitly represented.

RD and GA diagrams support various quantitative and qualitative analyses for complex models [4, 6].

(Q3) Choreography

This view is concerned with specifying the messaging protocol from the global stakeholder’s point of

view using languages such as WS-CDL. The protocol describes valid messaging sequences that the

8

interacting roles are allowed to exchange. The protocol provides a standard against which the global

stakeholder assesses participants’ compliance to the roles they play.

(Q4) Orchestration

This view is concerned with specifying messaging exchanged between services implemented by a

single participant, either internally or with the outside world, using standard process description

languages such as BPEL.

Framework for Service Interaction Design

By relating the representations in the four viewpoints we construct a framework that maintains

consistency between them. In this article, we focus on relating Q1-Q2 and Q1-Q3.

Q1-Q2: Each dependency in the RD model ties together a depending activity in the GA model of a

depender role to a dependee activity in the GA model of the role fulfilling the dependency, thereby

providing linkage between the local models. Figure 3.a. shows the result of using dependencies to relate

the local GA models of the vehicle repair interaction roles into a combined local-global model. By

combining together the GA models for all roles we establish inter-enterprise ordering of activity

execution. The order is such that the depending activity can only execute to completion when the

dependee activity has fulfilled the dependency (figure 3.b). By tying together the GA models we enable

participants to negotiate reconciliation of their needs.

Get Car Fixed

Make

Appointment
Appointment

Pickup Date

Profit from

Repair

Inspect

Vehicle

Facilitate Repair

1.. ∞

Collect

Payment

 Repairer

 Insurer

Approve

Claim

Pay

Invoice

 Submit

Claim

Claim Approval
Payment

Hand Over

Vehicle

Pickup

Vehicle

Schedule

Appointment

Haul

Vehicle

Specify

Pickup Date

Handle Car

Repair

 Claimant

Manage

Schedule

Repair

Vehicle

Figure 3.a Combined Local-Global model (local models abridged).

1.. ∞

Perform

Repairs

“Make Appointment" Started

Figure 3.b Using dependencies to infer inter-enterprise activity execution order

“Appointment” Requested

“Schedule Appointment” Started “Schedule Appointment” Completed

“Appointment” Confirmed

“Make Appointment” Completed

Global View

Claimant’s Local View

Repairer’s Local View

9

Q1-Q3: Dependencies also imply what messages will be exchanged between participants[3]. A

dependency fulfilled electronically typically implies two messages: a request message from the

depender and a response message from the dependee providing information that fulfills the

dependency. For example, the “Appointment” dependency implies that the Claimant sends a message

requesting an appointment and the Repairer replies with the date and time of the appointment. While

protocol messages are determined by examining dependencies, message ordering is determined by

examining constraints on the execution of activities at both ends of each dependency. Figure 4

summarizes the basic rules for automatically deriving messaging protocol from MOR.

Requirements-Driven Interaction Design

By elevating the level of abstraction at which the interaction is specified, we enable a design process

that focuses on the requirements of the stakeholders. Additionally, by relating the local viewpoints to

the global viewpoint we enable participants to collaborate with the global stakeholder on reconciling

their needs. The forward-engineering version of the design process starts with collaborative

specification of interaction requirements and then deriving the messaging protocol from the combined

Figure 4. Rules for deriving messaging protocol from requirements models

A

B

C

Start Translating C

Parallel {

 Translate A

 Translate B

}

End Translating C

Sequence {

 Translate A

 Translate B

}

Sequence {

 Start Translating A

 Role1 Send D-Request To Role2

 Translate B

 Role2 Send D-Response To Role1

 End Translating A

}

A

1..∞ While (Fulfillment condition of A not satisfied) {

 Translate A

}

Start Translating C

Choice {

 Translate A

 Translate B

}

End Translating C

A B

A

B

C

A B D

Role1

Requirements Model Fragment Translation to Messaging Protocol

Role2

10

local-global requirements model. The process provides a path to proceed systematically from possibly

conflicting business requirements of multiple enterprises all the way to the specification of inter-

enterprise messaging.

Collaborative Specification of Requirements

Participants collaborate on specifying interaction requirements while the regulatory agency mediates

negotiations between them. The design process proceeds in iterations as follows:

(Q2) A participant P1 makes a change to their local view to comply with business policies or

fulfill an emergent goal.

(Q2 to Q1) If the change to the local model of P1 involves adding or changing activities that

participate in dependencies, the change is propagated to the global model.

(Q1) The regulatory agency reviews the requested change to the global model made by P1

and approves it if it finds it reasonable.

(Q1 to Q2) The regulatory agency notifies the participant at the other end of the dependency, P2,

of the added/changed responsibility. P2 can then accept the new dependency and

propagate its impact to their local model.

(Q2) P2 adapts their local model to fulfill their responsibility towards the added dependency.

The iterative nature of the process makes it suitable for application to an existing model[7].

Assuming that the model in figure 3 is the starting point, the design process may proceed as follows:

• (Q2) To guarantee fulfillment of “Collect Payment” goal the Repairer decides to add to their

local model a “Verify Claim Approval” activity to be performed prior to inspecting the vehicle.

• (Q2 to Q1) Realizing that this activity requires the Claimant to provide information, the Repairer

suggests adding a “Proof of Claim Approval” dependency to the global model and suggests it is

to be fulfilled by the Claimant before car inspection.

• (Q1) The State’s Department of Insurance deems this suggestion reasonable and agrees to it.

• (Q1 to Q2) The Claimant is notified of the new dependency. They accept the new responsibility

of providing proof of claim approval.

• (Q2) The Claimant adds an activity to their local model for providing the approval prior to

handing the vehicle to the Repairer.

Deriving Messaging Protocol from Requirements Models

Once an agreement on the requirements models is reached, the stakeholders need to specify a

messaging protocol that satisfies these requirements. We implemented an automated tool (sidebar 2)

that accepts MOR as input and, utilizing the precise semantics of MOR[8] and rules in figure 4, generates

the messaging protocol. The messaging protocol of the vehicle repair example is obtained by applying

11

our tool to MOR of figure 3. Our tool also generates comments interleaved with the messaging protocol

to indicate the points at which physical activities are expected to execute. We have also developed

transformations from the pseudo language used in this article to WS-CDL constructs.

Sidebar 2: Download Tool and Case Studies

The vehicle repair and healthcare case study results are available at http://tinyurl.com/chreq-

eval-rep. Our CHoreography REQuirements tool (CHREQ) is downloadable from

https://sourceforge.net/projects/chreq. The download includes source files for the example in

this article and those of the case studies.

Evaluation

The vehicle repair example in this article is an abridged version of a real-world case study built for a

European insurance company. We applied our approach to the full version of the case study as follows:

1. Modeled the original requirements for the European market.

2. Analyzed requirements from real public documents published by Departments of Insurance in

several States in the US and Canada.

3. Applied our process to the original model to re-design it to the North American context.

4. Generated the messaging protocol for the re-designed models.

We also applied our approach to a case study from the healthcare domain (sidebar 2). In both cases

results were encouraging:

• The majority of requirements in the public documents were easily captured using our design process

in an iterative manner.

• Our design process allowed systematic exploration of design alternatives and rationalizing choices

using business policies.

• Physical activities were naturally incorporated into the design both as design constraints and

alternative implementation choices to electronic messaging.

• Messaging protocols were derived automatically using our tool, thereby ensuring consistency

between the requirements and the protocol. In fact, the tool helped identify errors in hand-

constructed messaging protocol published earlier.

The evaluation helped identify areas where our approach can be improved:

• Even though MOR are built from a few primitive constructs, there is a curve to learning how to

create robust models. To smooth this learning we built a set of patterns that architects can apply to

incrementally create requirements models.

12

• MOR diagrams can get complicated quickly. We need to develop techniques for modularizing MOR

into reusable parts, especially for optional and exceptional execution paths. To help manage the

complexity we plan to integrate our tool with an automatic graph layout tool.

• It remains to be seen how our approach supports reverse engineering, i.e. re-constructing MOR

from existing messaging protocols in a semi-automated manner.

• Some problematic aspects of WS-CDL remain challenging at the level of MOR. Business needs

requiring synchronization of multiple instances of an interaction stands out as one.

These results encouraged us to plan further evaluations including getting other practitioners to apply

our design process to their business cases.

Acknowledgments

Nuseibeh is supported, in part, by SFI grant 03/CE2/I303_1

References
[1] M. P. Papazoglou and D. Georgakopoulos, "Service-Oriented Computing," Communications of the ACM, vol. 46, 2003,

pp.25-28.

[2] C. Peltz, "Web Services Orchestration and Choreography," IEEE Computer, vol. 36, 2003, pp.46-52.

[3] A. Mahfouz, L. Barroca, R. Laney, and B. Nuseibeh, "Customizing Choreography: Deriving Conversations from

Organizational Dependencies," Proc. 12th Int’l IEEE Enterprise Distributed Object Computing Conference (EDOC'08),

IEEE Computer Society, 2008, pp. 181-190.

[4] E. Yu and J. Mylopoulos, "Understanding “Why” in Software Process Modelling, Analysis, and Design," Proc. 16th

International Conference on Software Engineering (ICSE'94), IEEE Computer Society, 1994, pp. 159-168.

[5] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, "Tropos: An Agent-Oriented Software

Development Methodology," Journal of Autonomous Agents and Multi-Agent Systems, vol. 8, 2004, pp.203-236.

[6] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, "Formal Reasoning Techniques for Goal Models," Journal

on Data Semantics, vol. 2800, 2003, pp.1-20.

[7] A. Mahfouz, L. Barroca, R. Laney, and B. Nuseibeh, "Requirements-Driven Collaborative Choreography

Customization," Proc. International Conference on Service-Oriented Computing (ICSOC'09), Springer, 2009, pp. 144-

158.

[8] A. Mahfouz, L. Barroca, R. Laney, and B. Nuseibeh, "From Organizational Requirements to Service Choreography," in

Proceedings of the 2009 Congress on Services - I - Volume 00: IEEE Computer Society, 2009, pp. 546-553.

About The Authors
Ayman Mahfouz is Chief Architect at Webalo, Inc (www.webalo.com). He has been developing enterprise and mobile

software for the past 15 years. He has a Masters in software engineering and is currently finishing his PhD in the topic of

Requirements-Driven Adaptation of Service-Oriented Interactions. He is a member of the IEEE and ACM. Contact him at

amahfouz@gmail.com

Leonor Barroca is a Senior Lecturer in Computing in the Open University, UK. with a PhD in Computer Science from the

University of Southampton, UK. Contact her at l.barroca@open.ac.uk

Robin Laney is a Senior Lecturer in Computing at the Open University, UK, with a PhD in Computer Science from King's

College, University of London, UK. Contact him at r.c.laney@open.ac.uk.

Bashar Nuseibeh is a Professor of Software Engineering and Chief Scientist of Lero – The Irish Software Engineering

Research Centre, and a Professor of Computing at The Open University, UK. He is Editor-in-Chief of IEEE Transactions on

Software Engineering, and holds PhD in Software Engineering from Imperial College London. Contact him at

b.nuseibeh@open.ac.uk

