The Open UniversitySkip to content
 

Nonorientable biembeddings of Steiner triple systems

Grannell, M.J. and Korzhik, V.P. (2004). Nonorientable biembeddings of Steiner triple systems. Discrete Mathematics, 285(1-3) pp. 121–126.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1016/j.disc.2004.01.013
Google Scholar: Look up in Google Scholar

Abstract

Constructions due to Ringel show that there exists a nonorientable face 2-colourable triangular embedding of the complete graph on n vertices (equivalently a nonorientable biembedding of two Steiner triple systems of order n) for all n≡3 (mod 6) with n9. We prove the corresponding existence theorem for n≡1 (mod 6) with n13.

Item Type: Journal Article
ISSN: 0012-365X
Keywords: Topological embedding; Complete graph; Steiner triple system
Academic Unit/Department: Mathematics, Computing and Technology > Mathematics and Statistics
Item ID: 2151
Depositing User: Mike Grannell
Date Deposited: 06 Jun 2006
Last Modified: 02 Dec 2010 19:46
URI: http://oro.open.ac.uk/id/eprint/2151
Share this page:

Altmetrics

Scopus Citations

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk