Csörnyei, Marianna; Kirchheim, Bernd; O'Neil, Toby; Preiss, David and Winter, Steffen
(2008).

PDF (Not Set)
 Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (311Kb) 
URL:  http://link.springer.com/article/10.1007/s0020500... 

DOI (Digital Object Identifier) Link:  http://doi.org/10.1007/s0020500801424 
Google Scholar:  Look up in Google Scholar 
Abstract
For regular onedimensional variational problems, Ball and Nadirashvilli introduced the notion of the universal singular set of a Lagrangian and established its topological negligibility. This set is defined to be the set of all points in the plane through which the graph of some absolutely continuous minimizer passes with infinite derivative.
Motivated by Tonelli's partial regularity results, the question of the size of the universal singular set in measure naturally arises. Here we show that universal singular sets are characterized by being essentially purely unrectifiable  that is, they intersect most Lipschitz curves in sets of zero length and that any compact purely unrectifiable set is contained within the universal singular set of some smooth Lagrangian with given superlinear growth. This gives examples of universal singular sets of Hausdorff dimension two, filling the gap between previously known onedimensional examples and Sychev's result that universal singular sets are Lebesgue null.
We show that some smoothness of the Lagrangian is necessary for the topological size estimate, and investigate the relationship between growth of the Lagrangian and the existence of (pathological) rectifiable pieces in the universal singular set.
We also show that Tonelli's partial regularity result is stable in that the energy of a `near' minimizer over the set where it has large derivative is controlled by how far is from being a minimizer.
Item Type:  Journal Article 

Copyright Holders:  2008 SpringerVerlag 
ISSN:  14320673 
Keywords:  calculus of variations; universal singular sets; 
Academic Unit/Department:  Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics Faculty of Science, Technology, Engineering and Mathematics (STEM) 
Related URLs:  
Item ID:  2143 
Depositing User:  Toby O'Neil 
Date Deposited:  15 Aug 2007 
Last Modified:  06 Aug 2016 08:00 
URI:  http://oro.open.ac.uk/id/eprint/2143 
Share this page: 
Altmetrics  Scopus Citations 
Download history for this item
These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.